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Abstract

In the original formulation of influence diagrams (IDs), each model contained exactly one
utility node. Tatman and Shachter (1990), introduced the possibility of having super-value
nodes that represent a combination of their parents’ utility functions. They also proposed an
arc reversal algorithm for IDs with super-value nodes, which has two shortcomings: it requires
dividing potentials when reversing arcs, and it tends to introduce redundant (i.e., unnecessary)
variables in the resulting policies. In this paper we propose a variable-elimination algorithm
for influence diagrams with super-value nodes that in general introduces fewer redundant
variables, is faster, requires less memory, may simplify sensitivity analysis, and can speed-up
inference in IDs containing canonical models, such as the noisy OR.
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1 Introduction

1.1 Influence diagrams

An influence diagram (ID) [10] is a probabilistic graphical model for decision analysis, having
three kinds of nodes: chance, decision, and utility—see Section 1.2 for a formal definition. The
goal of evaluating an ID is to obtain the expected utility and an optimal strategy, which consists
of a policy for each decision. The first algorithm for evaluating IDs proceeded by expanding and
evaluating an equivalent decision tree [10]. Later, Olmsted [22] proposed the arc reversal (AR)
algorithm, which evaluates the ID recursively by eliminating its nodes and inverting arcs when
necessary—see also [25].

In the original proposal [10], each influence diagram (ID) had only one utility node. A node
like this, whose parents are chance nodes or decision nodes, is called nowadays an ordinary utility
node, in contrast with super-value nodes (SVNs), whose parents are other utility nodes; a SVN
represents a utility that is a combination of the utilities of their parents. SVNs were introduced
in 1990 by Tatman and Shachter [29], who also extended the AR algorithm to cope with SVNs of
type sum and product.

In the next decade, several variable-elimination algorithms were proposed for IDs [3, 4, 11, 27],
which are in general more efficient than AR because they do not need to divide potentials. They
permit that the ID contains several ordinary utility nodes, under the assumption that the global
utility is the sum of all of them, but none of those algorithms can deal with SVNs.

Our interest on SVNs arose during the construction of a decision-support system for the me-
diastinal staging of non-small cell lung cancer [17], whose utilities combine additively and multi-
plicatively, as shown in Figure 1. In order to evaluate this ID, we wished to have an algorithm for
IDs with SVNs, such that:1

1. is faster than AR,

2. requires less memory,

3. avoids redundant variables,

4. simplifies sensitivity analysis, and

5. can be integrated with state-of-the-art algorithms for inference in IDs containing canonical
models.

1In fact, the fourth objective was not set at the beginning of our study, but emerged as a possibility during the
design of the algorithm.
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Figure 1: Decision-support system for the mediastinal staging of non-small lung cancer.

The first two objectives are obvious. We conjectured that a variable elimination algorithm for
IDs with SVNs might fulfill them because, unlike AR, it does not need to divide potentials and
the number of potentials stored in the working memory is smaller.

The second objective refers to redundant variables, i.e., those whose value is known when
making a decision but do not affect the optimal policy—see Section 1.3. As the complexity
of a policy grows exponentially with the number of variables in its domain, it is desirable to
remove as many redundant variables as possible, not only for reducing the storage space but,
more importantly, for communicating the policy to a human being. In fact, the explanation of
reasoning is a crucial issue for building and deploying decision-support systems because it helps
to debug the model and to convince the user that the results are correct, and also for educational
purposes [13, 14, 15]. Policies containing redundant variables are more difficult to understand and
to debug. Even worst, the inclusion of structurally-redundant variables (cf. Sec 1.3), i.e., those
that can not affect the policy due to the nature of the causal relations involved in the problem,
undermines the user’s confidence in the policies recommended by the expert system.

The fourth objective refers to sensitivity analysis, which consists in studying how the expected
utility and the optimal strategy vary as a consequence of changes in the model [2, 20]. Parametric
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sensitivity analysis in IDs is performed by assigning a range of variation or a probability distri-
bution to (some of) the utilities and conditional probabilities that define the ID, or by finding
out the thresholds that determine a change of the optimal policies. However, in some cases the
structure of the graph that defines an ID implies that the values of a certain potential (namely, a
conditional probability table or a utility function) do not affect the expected utility or the optimal
policies of some decisions. In that case, it is not necessary to analyze such parameters, thus saving
computations and simplifying the report of the results. Section 2.2.1 shows an example of this.

Finally, the fifth objective has to do with canonical models, which are probabilistic relations
defined by some constrains inspired on causal properties [5]. They are called “canonical” because
they can be used as elementary blocks that combine to build up more sophisticated probabilistic
models [23]. In particular, the relation between a node and its parents in a Bayesian network (or
a chance node and its parents in an ID), which in the case of discrete variables takes the form
of a conditional probability table (CPT), can sometimes be represented by a particular canonical
model, while other CPTs in the same network might be based on different models. The canonical
models that appear more often in practice are the noisy OR and its extension, the noisy MAX.
Canonical models do not only simplify the process of building CPTs, but may also lead to drastic
computational savings in both memory and time. For instance, CPCS [24] is a large medical
Bayesian network that for many years resisted to exact inference algorithms, because all of them
ran out of memory when trying to compute some marginal queries—see the references in [28]. Even
most of the approximate algorithms converged very slowly when the evidence introduced was very
unlikely [1]. However, in 1999 Takikawa and D’Ambrosio [28] proposed a new factorization of the
noisy MAX that was able to do exact inference on that network very efficiently: the more complex
query took only 0.29 seconds; the factorization by Dı́ez and Galán [6] further reduced that time to
0.05 seconds. Those factorizations can be integrated with both variable elimination and clustering
algorithms, but not with arc reversal. That was an additional reason for developing a variable
elimination algorithm for IDs with SVNs, in order to obtain similar savings to those of Bayesian
networks.

Our algorithm is an extension of variable-elimination algorithms for IDs [3, 4, 11, 12, 27]; in
fact, when the ID has no SVN, it perfoms essentially the same operations as them. The main
difference is that it represents the utility function of the ID in the form of a tree, and in a refined
version of the algorithm, in the form of an acyclic directed graph (ADG). The algorithm usually
transforms that tree or ADG before eliminating each variable, trying to preserve its separability
as long as possible, in order to reduce the space complexity and to avoid redundant variables in
the policies.

The remainder of this paper is structured as follows. Section 1.2 presents the basic definitions
for IDs and Section 1.3 analyzes the problem of redundant variables. Section 2 presents a new
algorithm for eliminating chance variables (Sec. 2.1) and decision variables (Sec. 2.2) from a tree
of potentials (ToP) (and also exposes a variable-elimination algorithm for IDs with SV nodes on a
ToP). Section 3 improves the previous algorithm by using an acyclic directed graph of potentials
(ADGoP) instead of a ToP. Section 4 proposes three variations of that algorithm that in some
cases may lead to more efficient computations. Section 5 describes the empirical evaluation of
different versions of our algorithm, comparing them with arc-reversal. We discuss related work
and future research lines in Section 6, and conclude in Section 7.

1.2 Basic definitions

An ID is a probabilistic graphical model that consists of three disjoint sets of nodes: decision nodes
VD, chance nodes VC , and utility nodes VU . Chance nodes represent events that are not under
the direct control of the decision maker. Decision nodes correspond to actions under the direct
control of the decision maker. Given that each chance or decision node represents a variable, we
will use indifferently the terms variable and node. IDs assume that there is a total ordering of the
decisions, which indicates the order in which the decisions are made.

We distinguish two types of utility nodes: ordinary, whose parents are decision and/or chance
nodes, and super-value, whose parents are utility nodes. We assume that there is a utility node
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U0 that is a descendant of all the other utility nodes, and therefore has no children.2

The meaning of an arc in an ID depends on the type of nodes that it links. An arc from a
decision Di to a decision Dj means that Di is made before Dj . An arc from a chance node C to
a decision node Dj means that the value of variable C is known when making decision Dj . We
assume the non-forgetting hypothesis, which means that a variable C known for a decision Dj is
also known for any posterior decision Dk, even if there is not an explicit link C → Dk in the graph.

A potential is a real-valued function over a domain of finite variables. The quantitative in-
formation that defines an ID is given by (1) assigning to each random node C a conditional
probability potential p(C|pa(C)) for each configuration of its parents, pa(C)3, (2) assigning to
each ordinary utility node U a potential ψU (pa(U)) that maps each configuration of its par-
ents onto a real number, and (3) assigning a utility-combination function to each super-value
node. The domain of each function U is given by its functional predecessors, FPred(U); thus, the
functional precedessors of an ordinary utility node are its parents, FPred(U) = Pa(U), and the
functional predecessors of a super-value node are all the functional predecessors of its parents:
FPred(U) =

⋃′
U ∈ Pa(U)FPred(U ′). The algorithms described in this paper assume that all the

super-value nodes in the ID are either of type sum or product.4

The matrix of an ID ψ, is defined by

ψ(VC ,VD) =

( ∏

C∈VC

P (C|pa(C))

)
ψU0(FPred(U0)) . (1)

The total ordering of the decisions {D1, . . . , Dn} induces a partition of the chance variables
{C0,C1,. . .,Cn}, where Ci is the set of variables unknown for Di and known for Di+1. The set of
variables known to the decision maker when deciding on Di is called the informational predecessors
of Di and denoted by IPred(Di). Consequently, IPred(Di) = C0∪{D0}∪C1∪ . . .∪{Di−1}∪Ci =
IPred(Di−1) ∪ {Di−1} ∪Ci.

The maximum expected utility (MEU ) of an ID whose chance and decision variables are all
discrete is

MEU =
∑
c0

max
d1

∑
c1

. . .
∑
cn−1

max
dn

∑
cn

ψ(vC ,vD) . (2)

An optimal policy δDi is a function that maps each configuration of the variables in IPred(Di−1),
i.e., those at the left of Di in the above expression, onto the value di of Di that maximizes the
expression at the right of Di (in the case of a tie, any of the values of Di that maximize that
expression can be chosen arbitrarily):

δDi(IPred(Di)) = arg max
di∈Di

∑
ci

max
di+1

. . .
∑
cn−1

max
dn

∑
cn

ψ(vC ,vD) . (3)

For instance, for the graph given in Figure 2,

MEU =
∑

b

max
d

∑
a

P (a) · P (b) · [U1(a) + (U2(a, d) ∗ U3(b))] (4)

and
δD(b) = arg max

d∈D

∑
a

P (a) · P (b) · [U1(a) + (U2(a, d) ∗ U3(b))] (5)

2Clearly, an ID having only one utility node satisfies this condition by identifying such a node with U0. An ID
having several utility nodes assumes that the global utility is their sum, and can be modified to fulfill that condition
by adding a new node U0, of type sum, whose parents are the original utility nodes. Therefore, this assumption
does not restrict the types of IDs that our algorithm can solve.

3Pa(X) is the set of parents of X, and pa(X) is a configuration of X.
4A super-value node Ui representing a combination function other than the sum or the product can be trans-

formed into an ordinary utility node as follows: if Uj is a parent of Ui, we remove Uj from the ID and add its
parents as new parents of Ui, and proceed recursively until no parent of Ui is a utility node. The new utility
function for Ui derives from the original utility function of Ui and from those of its utility ancestors in the original
ID. This transformation is necessary for both our algorithm and arc reversal [29].
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Figure 2: Graph of a small ID containing two super-value nodes: one of them is of type product,
and the other of type sum.

1.3 Redundant variables

According with Equation 3, in principle, the domain of a policy consists of all the variables whose
value is known when making that decision: dom(δDi) = IPred(Di). However, in some cases
the policy δDi does not depend on a particular variable X of IPred(Di); we then say that X is
redundant. The formal definition is as follows.

Definition 1 Let D be a decision variable in an ID and X an informational predecessor of D:
X ∈ IPred(D). Variable X is said to be redundant for D if and only if

∀x, ∀x′, ∀y, δD(x,y) = δD(x′,y)

where x and x′ are values of X and y is a configuration of the other informational predecessors
of D: Y = IPred(D) \ {X}.

Shachter [26] distinguished two types of redundant variables, under the names of “irrelevant”
and “probabilistically irrelevant”. Following partially the terminology of Faguiouli and Zaffalon
[8], we prefer to use the terms “structurally redundant” and “numerically redundant”, which are
defined as follows.

Definition 2 A redundant variable for decision D in an ID I is structurally redundant if and
only if it is redundant for all the IDs having the same graph as I. Otherwise, it is numerically
redundant.

Therefore, the structural redundancy only depends on the graph of the ID, while numerical
redundancy depends on the assignment of probability and utility potentials. Several algorithms
have been proposed in the literature for detecting structurally redundant variables by analyzing
the graph [8, 19, 21, 26, 31], but none of them can cope with SVNs. In a future paper we will
propose a new algorithm that solves this problem, but in our opinion this is a not crucial issue,
as the variable elimination algorithm that we describe in this paper rarely includes structurally
redundant variables—see the experiments in Section 5. However, we might always apply the
redundancy-detection algorithm if redundant variables were a relevant problem in our domain of
application.

An additional advantage of our algorithm, related to this topic, is that it usually avoids the
introduction of quasi-structurally redundant variables, which we define as follows:

Definition 3 An ordinary utility node in an ID is monotonic if its utility function contains only
non-positive or non-negative values.
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Definition 4 A variable X in an ID is quasi-structurally redundant for a decision D with respect
to a subset of utility nodes if the monotonicity of all those nodes implies that X is redundant for
D.

Please note that quasi-structural redundancy is related with numerical redundancy, because it
depends on the values of some parameters in the ID, but on the other hand, such variable will be
redundant in all the IDs having the same graph and satisfying that condition, which implies that
quasi-structural redundancy is a property of the graph, not of a particular ID—hence the name
“quasi-structural”.

For instance, for the graph given in Figure 2 the optimal policy for decision D, given by
Equation 5, depends on B. That equation can be rewritten as

δD(b) = arg max
d∈D

P (b) · [u′1 + U ′
2(d) ∗ U3(b)] (6)

where u′1 =
∑

a P (a)·U1(a) and U ′
2(d) =

∑
a P (a)·U2(a, d). Given that P (b) is always non-negative

and u′1 is a constant,
δD(b) = arg max

d∈D
U ′

2(d) ∗ U3(b) (7)

If the utility node U3 is monotonic, then its values are either all non-negative or all non-positive.
In the former case,

∀b, U3(b) ≥ 0 =⇒ ∀b, max
d∈D

U ′
2(d) ∗ U3(b) = U3(b) ∗max

d∈D
U ′

2(d) (8)

=⇒ ∀b, δD(b) = arg max
d∈D

U ′
2(d) (9)

and in the latter

∀b, U3(b) ≤ 0 =⇒ ∀b, max
d∈D

U ′
2(d) ∗ U3(b) = U3(b) ∗min

d∈D
U ′

2(d) (10)

=⇒ ∀b, δD(b) = arg max
d∈D

− U ′
2(d) (11)

In both cases δD(b) is independent of B, i.e., B is quasi-structurally redundant for decision D with
respect to the subset of utility nodes {U3}.

2 Variable-elimination on a tree of potentials

The basic idea of our algorithm consists in representing the matrix of an influence diagram, defined
in Equation 1, as a tree of potentials (ToP), whose leaves (also called terminal nodes) represent
probability potentials φi or utility potentials ψj , and each non-terminal node indicates either the
sum or the product of the potentials represented by its children.

For instance, Figure 3 shows the ToP for the ID in Figure 2, whose matrix is P (a) · P (b) ·
[U1(a) + U2(a, d) · U3(b)].

The construction of the ToP proceeds as follows. The root will always be a non-terminal node
of type product. Each probability potential of the ID is added as a child of the root. If the bottom
node of the ID, U0, is an ordinary utility node or a super-value node of type sum, it is also added
as a child of the root. On the other hand, if U0 is a super-value node of type product, its parents
in the ID are added as children of the root in the ToP. All the other utility nodes in the ID must
be added in the same way. As a result, the ToP represents the matrix of the ID, i.e., the tree of
utility nodes in the ID, although upside-down, together with the probability potentials.

A non-terminal node in a ToP is said to be duplicated if it is of the same type as its parent. A
duplicated node in a ToP can be removed by transferring its children to its parent.

We describe in the next two subsections how the elimination of chance and decision variables
in an ID is handled by applying the sum and max operators, respectively, to the ToP. We will
assume that the ToP does not contain duplicated nodes.
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× 

Figure 3: Tree of potentials (ToP) for the ID of Figure 2.

2.1 Elimination of a chance variable on a ToP

The elimination of a chance variable A consists in applying the operator
∑

A to the ToP. We
divide this process in two phases: we first unfork the ToP, and then eliminate A in the leaves of
the new ToP. The following definitions will help us to explain the algorithm.

Definition 5 A variable X appears in a ToP t if it belongs to its domain, i.e., if it belongs to the
domain of some of the terminal nodes of t.

Definition 6 A node n of type product is forked with respect to (wrt) a variable A if A appears
in more than one of the branches of n.

Definition 7 A ToP is forked wrt A if at least one of its product nodes is forked wrt A. Otherwise,
it is non-forked.

For example, variable A appears in the ToP of Figure 3. The root node is forked wrt A because
A appears in two of its three branches. Consequently, the ToP in that figure is forked wrt variable
A. In contrast, the subtree rooted at the sum node is not forked wrt A because it only contains
one product node, which is not forked.

2.1.1 Algorithm for eliminating forked nodes

Using an object-oriented programming representation, each node in a ToP may be implemented
as an object of class ToP-node having three properties:

• dependsOnVariable, a Boolean value that indicates whether the node depends on the variable
A to be eliminated;

• dependentChildren, a list of the children of the node that depend on variable A;

• mayBeForked, a Boolean value used by the method unfork to avoid visiting each subtree
several times; it is initialized to true for all nodes and is also set to true when the method
unfork has to visit the same subtree again for a different variable.

The class ToP-node has a main method, unfork, which uses two auxiliary methods: distribute
and compact. The method distribute transforms the tree in Figure 4.a, in which both siblings n1

and n2 depend on A, into the tree in Figure 4.b. Nodes n1 and n2 are children of a product node
forked wrt A. The procedure distribute is described by Algorithm 1—see also Figure 4.

Under the conditions of the method distribute, illustrated in Figure 4, it is clear that the
potential obtained after distributing n2 is equivalent to the original potential, because

ψ2 ×
k∑

l=1

ψ1,l =
k∑

l=1

ψ2 × ψ1,l . (12)
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Figure 4: (a) A ToP, where we assume that both n1 and n2 depend on the chance variable to be
eliminated, A. (b) A ToP equivalent to (a), in which n2 has been distributed with respect to n1.

For instance, in the example in Figure 3, whose potential was P (a)·P (b)·[U1(a)+U2(a, d)·U3(b)],
after distributing P (a) with respect to the sum node, the new potential will be P (b)·[P (a)·U1(a)+
P (a) · U2(a, d) · U3(b)] (see Figure 5.a).

 

P(A) 

× 

+ P(B) 

U1(A) U2(A,D) 

× 

× 

P(A) U3(B) 
(a)

 

P(A)*U1(A) 
 

× 

+ P(B) 

× 

P(A)*U2(A,D) 
 

U3(B) 
U1´(A) 

 

U2´(A,D) 
 

(b)

Figure 5: (a) ToP equivalent to that in Figure 2.b, in which P (A) has been distributed with
respect to the sum node. (b) ToP equivalent to (a), in which the leaves dependent on A have been
compacted and replaced by two new potentials, U ′

1(A) and U ′
2(A,D).

Please note that the product node that represents P (a) ·U1(a) in Figure 5.a is forked, but since
P (a) and U1(a) are terminal nodes, it can be unforked by multiplying its children. This process
is performed by the method compact, shown as Algorithm 2.

Figure 5.b shows the result of applying the method compact to the product nodes of the ToP
of Figure 5.a, when A is the variable to be eliminated.

Finally, the method unfork, invoked as n.unfork(A), transforms the subtree under node n into
a new subtree representing an equivalent potential, but unforked wrt A. The method unfork is
described by Algorithm 3.

Please note that the while loop in this algorithm executes only when at least two children of
n depend on A, and at least one of them—which we have called n1—is of type sum, because after
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Algorithm 1 distribute (for a ToP)

Input: n1: a sum node depending on A, child of a product node n forked wrt A;
n2: another node depending on A, sibling of n1;
A: a chance variable.

Effects: the subtrees under n1 are multiplied by n2.
1: for all n1,i ∈ children(n1) do
2: if n1,i is a terminal node then
3: remove n1,i as a child of n1;
4: add a new product node n′1,i as a child of n1;
5: add both n1,i and n2 as children of n′1,i;
6: n′1,i.mayBeForked := true;
7: else
8: // n1,i is a product node
9: add n2 as a child of n1,i;

10: n1,i.mayBeForked := true;
11: end if
12: end for
13: n1.mayBeForked := true;

Algorithm 2 Compact

Input: n: a product node, whose children depending on A are all terminal nodes.
Effects: the children of n that depend on A are replaced by their product.
1: remove from n.dependentChildren and n.children all the leaves that depend on A

and remove them as children of n;
2: add the product of all to n.children and to n.dependentChildren;
3: if n has only one child (say n1) then
4: replace n with n1 in the tree;
5: end if

executing compact(n) node n cannot have two leaf children depending on A.

Theorem 8 For every ToP, the algorithm unfork terminates in a finite number of steps, returning
a non-forked ToP.

The proof can be found in Appendix A.1.

2.1.2 Elimination of a chance variable from a non-forked tree

When a tree is non-forked, the process of eliminating a chance variable A can be understood as
“transferring” the

∑
A operator from the root of the ToP down to the leaves that depend on A,

according with the following theorem.

Theorem 9 Let t be a ToP, non-forked wrt A, representing the potential ψ. The potential
∑

A ψ
is equivalent to the potential represented by the ToP t′ obtained by replacing in t each terminal
node ψi depending on A with the potential

∑
A ψi.

The proof can be found in Appendix A.2.

Coming back to the example in Figure 2, the potential P (b) · [U ′
1(a) + U ′

2(a, d) · U3(b)] was
represented by the tree in Figure 5.b, which is non-forked wrt A. The elimination of chance
variable A is performed by replacing U ′

1(a) with the constant u′1 =
∑

a U ′
1(a), and replacing

U ′
2(a, d) with U ′

2(d) =
∑

a U ′
2(a, d). The result is ψ = P (b) · [u′1 + U ′

2(d) · U3(b)].

10



Algorithm 3 Unfork

Input: n (object receiving the message): a node in the ToP;
A: a chance variable.

Effects: n is unforked wrt A, its attribute mayBeForked is set to false and the attribute
dependsOnVariable indicates whether n depends on A.

1: if n.mayBeForked = true then
2: if n is a terminal node then
3: if the potential of n depends on A then
4: n.dependsOnVariable := true;
5: else
6: n.dependsOnVariable := false;
7: end if
8: else
9: // n is a non-terminal node

10: for all ni ∈ children(n) do
11: ni.unfork(A);
12: end for
13: dependentChildren := children ni of n such that ni.dependsOnVariable = true;
14: if (size(dependentChildren) > 0) then
15: n.dependsOnVariable := true;
16: else
17: n.dependsOnVariable := false;
18: end if
19: if n is of type product then
20: compact(n);
21: while (size(dependentChildren)> 1) do
22: n1 := a sum node in dependentChildren;
23: n2 := other node in dependentChildren;
24: distribute(n1, n2);
25: n1.unfork(A);
26: end while
27: end if
28: end if
29: n1.mayBeForked := false;
30: end if

2.2 Elimination of a decision variable on a ToP

The elimination of a decision variable D from a potential ψ that does not depend on D is trivial,
because maxD ψ = ψ. The elimination from a terminal potential that depends on D is also
immediate. Let us assume that ψ is represented by a ToP, whose root node r is not terminal, and
ψi is the potential represented by the i-th child of r.

We analyze first the case in which r is of type sum. If more than one of the ψi’s depend on
D, it is not correct to eliminate D by replacing each ψi with maxD ψi, because maxD(ψi + ψi′)
may be different from maxD ψi + maxD ψi′—please note the contrast with Theorem 9. The right
procedure when r is of type sum is to add all the potentials that depend on D before eliminating
D; the rest of the potentials are not modified. Formally, if J is the set of subindices such that ψj

does not depend on D, and K contains the other subindices, then:

max
D

ψ = max
D

∑

i

ψi =
∑

j∈J

ψj + max
D

∑

k∈K

ψk

︸ ︷︷ ︸
ψD

. (13)

In case that r is of type product, we define J as the set of subindices such that ψj is monotonic

11



and does not depend on D, and K as its complementary. We also define m as the number of indices
in J such that ψj has at least one negative value (the other values of ψj must be either negative
or null, because ψj is monotonic). If m is even, then

∏
j∈J ψj is non-negative, and consequently,

max
D

ψ = max
D

∏

i

ψi =
∏

j∈J

ψj ·max
D

∏

k∈K

ψk

︸ ︷︷ ︸
ψD

. (14)

If it is odd, then −∏
j∈J ψj is non-negative and

max
D

ψ = (−1) ·
∏

j∈J

ψj ·max
D

−
∏

k∈K

ψk

︸ ︷︷ ︸
ψD

. (15)

This analysis leads to Algorithm 4. The method for changing the sign of a subtree rooted
at n, used in step 23, is given by Algorithm 5. Please note that when only one of the children
of n depends on D, namely nk′ , then the algorithm is invoked recursively on nk′ , preserving the
structure of that subtree (steps 11 and 25). On the contrary, when more than one children depend
on D, those branches collapse into a potential ψD (steps 13 and 14), which after maximizing on
D, is reinserted as a terminal node (step 36).

For example, we have already shown that, for the ID in Figure 2 (see also Fig. 5), after
eliminating A the matrix is ψ = P (b) · [u′1 +U ′

2(d) ·U3(b)]. When eliminating D, we have maxd ψ =
P (b) · [u′1 + maxd(U ′

2(d) · U3(b))]. In general,

δD(b) = arg max
d∈D

(U ′
2(d) · U3(b)) . (16)

However, if U3 is non-negative, then maxd ψ = P (b) · [u′1 + u′2 ·U3(b)], where u′2 = maxd U ′
2(d),

and the optimal policy is
δD = arg max

d∈D
U ′

2(d) , (17)

which does not depend on B. If U3 is non-positive, then maxd ψ = P (b) · [u′1 + (−1) · u′2 · U3(b)],
where u′2 = maxd(−U ′

2(d)), and the optimal policy is

δD = arg max
d∈D

−U ′
2(d) , (18)

which does not depend on B, either. Therefore, when U3(b) is monotonic, our algorithm does
not include in the domain of δD the quasi-structurally redundant variable B. In contrast, the
arc-reversal algorithm [29] would collapse all the utility nodes into a single node when eliminating
A; as the parents of the new utility node are B and D, the elimination of D will always include B
in the domain of δD.

2.2.1 Sensitivity analysis

Another advantage of our algorithm, closely related with the attempt to avoid redundant variables,
is the possibility of simplifying sensitivity analysis. For instance, in the above example the policy
for D was given by Equation 16, where U ′

2(d) =
∑

a P (a) · U2(a, d). Consequently, if we perform
a sensitivity analysis for variable D in order to determine which variations in the parameters of
the ID may lead to a different policy, we only need to examine the probabilities in P (a) and the
utilities in U2(a, d) and U3(b), because δD does not depend at all on the other parameters, namely
those in P (b) and U1(a). This may lead to a significant simplification of sensitivity analysis.

Additional simplifications occur when U3(b) is monotonic. In this case, Equations 17 and 18
tell us that the policy only depends on the values in P (a) and U2(a, d), and on the sign of the
values in U3(b). This is important because usually human experts have uncertainty about the
exact value of a parameter, but not about its sign.

12



Algorithm 4 eliminateDecision

Input: n: a node in the ToP;
D: a decision variable.

Effects: the decision variable D is eliminated from the tree rooted at n.
Output: an optimal policy δD for D.
1: if n depends on D then
2: if n is a terminal node with associate potential ψ then
3: replace ψ with maxD ψ;
4: return the optimal policy, δD := arg maxD ψ;
5: else
6: // n is non-terminal; ψi is the potential represented by ni, the i-th child of n
7: if n is of type sum then
8: K := set of subindices such that ψk depends on D;
9: if |K| = 1 then

10: // K contains only one index, k′

11: return eliminateDecision(nk′ , D);
12: else
13: ψD:=

∑
k∈K ψk; // cf. Equation 13

14: end if
15: else
16: // n is of type product
17: J := set of subindices such that ψj is monotonic and does not depend on D;
18: K := set of subindices complementary of J ;
19: m := number of subindices in J such that ψj has at least one negative value;
20: if only one potential, ψk′ , depends on D then
21: if m is odd then
22: add a node with the constant potential −1 as a child of n;
23: changeSign(nk′);
24: end if
25: return eliminateDecision(nk′ , D);
26: else
27: // several potentials depend on D
28: ψD:=

∏
k∈K ψk; // cf. Equation 14

29: if m is odd then
30: add a node with the constant potential −1 as a child of n;
31: ψD:= −ψD; // cf. Equation 15
32: end if
33: end if
34: end if
35: for every k ∈ K, remove the k-th child of n;
36: add a node with the potential maxD ψD as a child of n;
37: return the optimal policy δD := arg maxD ψD;
38: end if
39: end if
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Algorithm 5 changeSign

Input: n: a node in the ToP, representing the potential ψ.
Effects: The subtree rooted at n is modified to represent the potential −ψ.
1: if n is a terminal node then
2: replace ψ with −ψ;
3: else
4: // n has several children, {ni}i∈I

5: if n is of type sum then
6: for all i ∈ I do
7: changeSign(ni);
8: end for;
9: else

10: // n is of type product;
11: add a node with the constant potential −1 as a child of n;
12: end if
13: end if

In contrast, in this example arc reversal [29] would eliminate D by maximizing on a potential
derived from all the potentials that define the ID, namely P (a), P (b), U1(a), U2(a, d), and U3(b),
which seems to indicate that every parameter in ID might affect the policy δD.

In summary, our variable-elimination algorithm may simplify sensitivity analysis if we keep
track (for instance, by mantaining a set of pointers) of the ID potentials that have been involved
in the computation of each potential at the ToP.

2.2.2 Inclusion of redundant variables

Although the distribution of potentials in general avoids the inclusion of redundant variables in
the policies, as we have seen in the previous examples (see also the experiments in Section 5.2), it
may fail to avoid it in some cases. The following example explains why.

Let us assume that we are interested in computing maxd

∑
a ψ, where ψ = [ψ1(a) + ψ2(b)] ·

[ψ3(a)+ψ4(d)]. When eliminating A, the node that represents ψ is forked wrt A. If the algorithm
takes [ψ1(a) + ψ2(b)] as n1 and [ψ3(a) + ψ4(d)] as n2, the result of the distribution is ψ = ψ1(a) ·
[ψ3(a)+ψ4(d)]+ψ2(b)·[ψ3(a)+ψ4(d)]. The first summand is represented by a product node, which
is still forked. A new distribution leads to ψ = ψ1(a) ·ψ3(a)+ψ1(a) ·ψ4(d)+ψ2(b) · [ψ3(a)+ψ4(d)]
and

∑
a ψ = ψ13+ψ′1 ·ψ4(d)+ψ2(b)·[ψ′3+ψ4(d)], where ψ13, ψ′1, and ψ′3 are the constant potentials

that result from summing out A from the terminal leaves of the previous potential. Then, the
elimination of D will explicitly compute ψ′1 · ψ4(d) + ψ2(b) · [ψ′3 + ψ4(d)], which yields a terminal
potential that depends on both B and D:

max
d

∑
a

ψ = max
d

ψ′1 · ψ4(d) + ψ2(b) · [ψ′3 + ψ4(d)]︸ ︷︷ ︸
ψ(b,d)

.

Therefore the algorithm will include B in the policy δD.
However, the algorithm would have been able to detect that B is quasi-structurally redundant

(wrt ψ′1 and ψ2) if it had distributed the top factors in a different way:

max
d

∑
a

ψ = max
d

∑
a

[ψ1(a) + ψ2(b)]︸ ︷︷ ︸
n2

· [ψ3(a) + ψ4(d)]︸ ︷︷ ︸
n1

= max
d

∑
a

{[ψ1(a) + ψ2(b)] · ψ3(a) + [ψ1(a) + ψ2(b)] · ψ4(d)}

= max
d

{ψ13 + ψ2(b) · ψ′3 + [ψ′1 + ψ2(b)] · ψ4(d)}
= ψ13 + ψ2(b) · ψ′3 + [ψ′1 + ψ2(b)] ·max

d
ψ4(d) .
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As we have seen, the first distribution performed in this example failed to detect that ψ4 is a
common factor for ψ′1 and ψ2.

This example underlies the importance of deciding which candidates for a distribution (i.e.,
those factors of type sum depending on the variable to be eliminated) should be chosen as n1 and
n2. The problem is that our algorithm performs myopically, in the sense that when eliminating
a variable it does not take into account the effect that it will have in the posterior elimination of
other variables. The refinement of our algorithm in order to avoid redundant variables is an open
problem, as mentioned in Section 6.5

2.3 Summary: Variable elimination algorithm using a ToP

Finally, Algorithm 6 integrates all the steps described so far. Please note that the input of this
algorithm is not only an ID, but also an elimination order for the variables in VC∪VD. This order
has to be a legal elimination sequence [19], which means that must eliminate first the variables in
Cn, then Dn, then those in Cn−1, and so on (see Equation 2). However, this condition only imposes
a partial ordering on the variables of VC ∪VD: it is still necessary to order the variables inside
each Ci. The similarity of this problem with others in Bayesian networks make us conjecture that
finding an optimal elimination sequency for our algorithms is NP-complete. Finding near-optimal
orderings is an open issue, that we will discuss in Section 6.

Algorithm 6 Variable elimination for IDs with SVNs on a ToP

Input: I: an ID that may contain SVNs;
O: a legal sequence elimination for the variables in VC ∪VD;

Output: the MEU of the ID and an optimal policy δD for each decision variable D.
1: construct the ToP t of I;
2: remove the duplicate nodes from t; // see Section 2
3: for all V ∈ O do
4: if V ∈ VC then
5: unfork t wrt V ; // Algorithm 3;
6: for each terminal node ni in t depending on V , replace that node with

∑
v ψi;

7: else
8: // V ∈ VD

9: eliminateDecision(r, V ); // Algorithm 4;
10: end if
11: end for
12: MEU := numerical value of the potential at t (a constant);

The correctness of Algorithm 6 is ensured given that the elimination of chance and decisions
variables are performed according to a legal elimination sequence, and each transformation of the
ToP preserves the MEU and the optimal policies.

3 Variable elimination on an ADG of potentials

In Section 2, the matrix of an ID was represented as a ToP. However, the matrix can also be
represented as an acyclic directed graph of potentials (ADGoP). The main advantage of this
representation is twofold: the saving of space in memory when a subtree appears more than once
in a tree, and the saving of computational time when distributing a potential and when eliminating
a variable. Another advantage is the ability to cope with IDs in which a utility node can have two
or more super-value children, as shown in Figure 6.

5It is noteworthy that in this example our algorithm can obtain the right domain for decision D if it selects the
right distribution of potentials, while arc reversal [29] would always include the redundant variable B in the policy
of D. However, the experiments in Section 5 show that in some exceptional cases arc reversal may include fewer
redundant variables than ours—an issue that deserves further investigation.
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Figure 6: (a) Graph of an ID with super-value nodes, in which U2 has two children. The global
utility potential is ψ = U1 + U2 + (U2 ·U3). (b) Acyclic directed graph of potentials (ADGoP) for
this ID.

The construction of the ADGoP from an ID is very similar to that of the ToP. The next two
subsections explain how to eliminate chance and decision variables from an ADGoP, under the
assumption that redundant nodes have already been removed—see Section 2.

3.1 Elimination of a chance variable on an ADGoP

The elimination of a chance variable A consists in applying the operator
∑

a to the ADGoP. This
process is divided in two phases: unforking the ADGoP, and eliminating A from the leaves of the
new ADGoP.

3.1.1 Algorithm for eliminating forked nodes

The process of unforking the ADGoP is similar to that of the ToP. This way, each node in a
ADGoP may be implemented as an object of class ADGoP-node, which has the same properties
and methods as ToP-node (see Sec. 2.1.1). The method unfork is identical, but distribute and
compact are slightly different in both classes, because when a node compacts its leaves, their
children having other parents can not be removed from the ADGoP.

For instance, in Figure 7.a, the node n2 is forked wrt A. When n2 compacts its leaves φ1(A)
and φ2(A), the leaf φ1(A) can not be removed from the ADGoP because it is also a child of n3.
The link n2 → φ1(A) will be removed and φ1(A) will be multiplied by φ2(A), but link n3 → φ1(A)
will remain, as shown in Figure 7.b.

In turn, the method distribute differs in that instead of creating several copies of n2, as we did
in the case of a ToP (see Fig. 4.b), we will draw several links from the children of n1 to n2 (see
Fig. 8).

3.1.2 Elimination of a chance variable from a non-forked ADGoP

When the ADGoP is non-forked, the process of eliminating a chance variable A is performed as
in a ToP, i.e., the

∑
a operator is “transferred down” from the root of the ADGoP to the leaves

that depend on A. Even if a leaf has several parents, the
∑

a operator is applied to it only once,
thus saving time with respect to the case of a ToP.
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Figure 7: (a) An ADGoP, in which n2 is forked wrt A. (b) ADGoP after the node n2 in (a)
compacts its leaves dependent on A.
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Figure 8: An ADGoP equivalent to the potential in Figure 4.a, in which n2 has been distributed
with respect to n1.

3.2 Elimination of a decision variable on an ADGoP

The elimination of a decision variable D from an ADGoP is similar to its elimination from a ToP (cf.
Algorithm 4, in Section 2.2): Algorithm 4 can also be applied when eliminating a decision variable
in an ADGoP, but when a node compacts its leaves, as required by some steps of Algorithm 4,
their children having other parents can not be removed from the ADGoP. Then, if a child n1 of n
has other parents, the link n → n1 must be removed, but n1 cannot be eliminated from the graph.
This is the same situation that appears when compacting the leaves of a node in an ADGoP before
eliminating a chance variable.

3.3 Summary: algorithm VE

The variable-elimination algorithm on an ADGoP is performed as in a ToP (see Algorithm 6),
with the only difference in step 1 we construct an ADGoP instead of a ToP, and then we perform
all the operations of Algorithm 6 in the ADGoP as we have described in this section, i.e., by
adapting the corresponding algorithms.
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4 Variations of the algorithm

The previous section has presented the basic algorithm of variable elimination (VE) on an ADGoP.
We discuss now three variations of that algorithm that may lead to more efficient computations.
In Section 5 we will compare empirically these versions with the standard VE.

4.1 Division of potentials (algorithm VE-D)

The VE algorithm presented above does not distinguish between probability and utility potentials.
In this respect, it is similar to some variable-elimination algorithms for IDs without SVNs [3, 4, 27].
On the contrary, the variable-elimination algorithm proposed in [12] for IDs without super-value
nodes differentiates both types of potentials and, when eliminating a chance variable, normalizes
the probability potentials by means of a division. The main advantage of this process is that the
utility potentials obtained after multiplication by the normalized potentials represent the utilities
associated with different scenarios, which may be useful for explaining the decision process to the
user [14].

Similarly, it is possible to design a new version of our VE algorithm for ID with SVNs,
called VE-D (where “D” stands for divisions), which instead of storing all the potentials in the
same ADGoP, handles a list of probability potentials (LoPP) and an ADG of utility potentials
(ADGoUP). Their product represents the matrix of the ID. The construction of the ADGoUP for
an ID is identical to that of the ADGoP (cf. Secs. 2 and 3), with the only difference that it does
not include the probability potentials.

The procedure of VE-D is described by Algorithm 7. This algorithm substitutes the variable
elimination algorithm on an ADGoP (Algorithm 6 adapted for using an ADGoP instead of a
ToP). The main difference between both algorithms is that Algorithm 7 keeps the probability
potentials in a LoPP, separated from the utility potentials contained in the ADGoP. The LoPP
and the ADGoP are modified when a variable V is eliminated as follows. The LoPP is updated
by removing the probality potentials dependent of V and adding to it their marginalization. The
ADGoP is prepared to proceed to the elimination of V , which is performed in the ADGoP as
described in Sections 3.1 and 3.2.

In Algorithm 7, the operator projectV in step 16 only makes sense when applied to a potential
that does not depend on V , i.e., a potential whose value is the same for all the configurations
having the same value of V . For instance, given a potential φ(v1, v2) such that φ(+v1,+v2) =
φ(¬v1, +v2) = 0.9 and φ(+v1,¬v2) = φ(¬v1,¬v2) = 0.4, which does not depend on V1, the
operator projectV1 gives a new potential φ′(v2) = projectV1φ(v1, v2) such that φ′(+v2) = 0.9 and
φ′(¬v2) = 0.4.

In Appendix A.3 we prove the correctness of VE-D, including the fact that when Algorithm 7
applies the operator projectV φV , this potential does not depend on V .

Example 10 For the ID in Figure 9, we have

MEU =
∑

b

max
d1

∑
c

max
d2

∑
a

P (a) · P (b|a) · P (c|a, d1) · ψ(a, d2) . (19)

When eliminating A we have φA(a, b, c, d1) = P (a)·P (b|a)·P (c|a, d1), φ∗A(b, c, d1) =
∑

a φA(a, b, c, d1),
and

MEU =
∑

b

max
d1

∑
c

max
d2

φ∗A(b, c, d1)
∑

a

φA(a, b, c, d1)
φ∗A(b, c, d1)

· ψ(a, d2)

︸ ︷︷ ︸
ψ(b,c,d1,d2)

, (20)

When eliminating D2 there is no probability potential depending on D2. Therefore, it is not
necessary to perform any multiplication nor any projection:

MEU =
∑

b

max
d1

∑
c

φ∗A(b, c, d1) ·max
d2

ψ(b, c, d1, d2)
︸ ︷︷ ︸

ψ(b,c,d1)

. (21)
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Algorithm 7 Algorithm VE-D (variable elimination with divisions)

Input: I: an ID that may contain SVNs;
O: a legal sequence elimination for the variables in VC ∪VD;

Output: the MEU of the ID and an optimal policy δD for each decision variable D.
1: construct the LoPP l and the ADGoP g of I;
2: remove the duplicate nodes from g;
3: for all V ∈ O do
4: remove from l all the potentials that depend on V ;
5: let φV be the product of all of them;
6: if V ∈ VC then
7: φ∗V :=

∑
V φV ;

8: // multiply g by φV /φ∗V
9: if the root of g (say r) is of type product then

10: add φV /φ∗V to the children of r;
11: else
12: replace r by a product node r′, and add r and φV /φ∗V as children of r′;
13: end if
14: else
15: // V is a decision
16: φ∗V := projectV φV ;
17: end if
18: add φ∗V to l;
19: eliminate V from g, as explained in Sections 3.1 and 3.2;
20: end for
21: MEU := numerical value of the potential at g (a constant);

When eliminating C only one probability potential depends on this variable, namely φ∗A. Therefore,
φC(b, c, d1) = φ∗A(b, c, d1), φ∗C(b, d1) =

∑
c φC(b, c, d1), and

MEU =
∑

b

max
d1

φ∗C(b, d1)
∑

c

φC(b, c, d1)
φ∗C(b, d1)

· ψ(b, c, d1)

︸ ︷︷ ︸
ψ(b,d1)

. (22)

When eliminating D1 only one probability potential depends (apparently) on this variable: φD1(b, d1) =
φ∗C(b, d1). However, Lemma 13 (cf. Appendix A.3) states that φD1(b, d1) does not depend on d1.
We then have φ∗D1

(b) = projectD1
φD1(b, d1). Then,

MEU =
∑

b

φ∗D1
(b) ·max

d1
ψ(b, d1)

︸ ︷︷ ︸
ψ(b)

. (23)

Finally, when eliminating B we have φB(b) = φ∗D1
(b), φ∗B =

∑
b φB(b), and

MEU = φ∗B
∑

b

φB(b) · ψ(b) . (24)

When the algorithm VE-D eliminates a decision Di, the ADPoUP represents a potential
that depends on the informational predecessors of Di: ψi(c0, d1, . . . , di−1, ci−1, di). It is possi-
ble to show that the value of ψi is the utility of the scenario in which (1) the variables in Cj

(0 ≤ j ≤ i) take the values dictated by the configuration cj , (2) the decision maker chooses
option dk for each decision Dk (1 ≤ k ≤ i) and (3) chooses the best option for the deci-
sions after Di.6 This is the main reason for dividing the probability potentials: when a user

6The proof is similar to that offered in [12] for the variable-elimination algorithm for IDs without supervalue
nodes: the proof remains valid if ψ is given by an ADGoUP instead of a sum of utility potentials.
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Figure 9: Influence diagram whose variable-elimination evaluation is detailed in Example 10.

of the decision-support system is often interested in knowing why the system recommends op-
tion di for scenario (c0, d1, . . . , di−1, ci−1) rather than option d′i, it is useful to display the values
ψi(c0, d1, . . . , di−1, ci−1, di) and ψi(c0, d1, . . . , di−1, ci−1, d

′
i), i.e., the utilities of the two options

[16]. When evaluating an ID with the arc-reversal algorithm, these values can be read directly
from the utility table of the ID before eliminating Di. However, in general VE (variable elimina-
tion without divisions) can not show these utilities, and this is the main reason for using VE-D
instead of VE.

4.2 Subset rule

Tatman and Shachter [29] proposed a heuristic, called the subset rule, for reducing the storage
space required by their arc reversal algorithm: if two utility nodes U1 and U2 have the same
successor U , being a super-value node of type sum/product, and Pa(U2) ⊆ Pa(U1), it is possible
to replace them by a new node U ′, such that [1] Pa(U ′) = Pa(U1), [2] U ′ is a parent of U , and
[3] U ′ = U1 + U2 or U ′ = U1 × U2, respectively. This replacement seems to be advantageous in
general because it does not increase the size of any operation necessary to solve the ID, and may
simplify subsequent combinations of potentials.

The subset rule can also be introduced in the algorithms VE and VE-D: when two leaves n1

and n2 representing potentials φ1 and φ2, respectively, have the same parent in the ToP of in the
AGDoUP and dom(φ1) ⊆ dom(φ2), then compacting n1 and n2 liberates storage space and may
simplify the next operations.

However, the application of the subset rule needs to check if dom(φ1) ⊆ dom(φ2) for every pair
of children of each potential, which has a certain computational cost, thus this rule is counterpro-
ductive in some cases. In Section 5.2.2 we analyze empirically the changes in the time and space
required when the subset rule is applied.

4.3 Unity potentials

The efficiency of the algorithms VE and VE-D can be improved by avoiding certain computations.
For example, when eliminating a barren node Xi,7 the ADGoP (for VE) or the LoPP (for VE-D)
contains a potential P (Xi|pa(Xi)). The elimination of Xi implies computing

∑
xi

P (xi|pa(xi)),
which is 1. Similarly, if φX = P (x|pa(X)) and X is a chance variable, the VE-D algorithm
will compute φ′X =

∑
x φX , which is also 1. In other cases, it will be necessary to perform the

marginalization
∑

x[φX/φ∗X ], which is equal to 1 even if φX was not a conditional probability,
because φ∗X =

∑
x φX—see Algorithm 7, Step 7.

If the algorithm recognizes these situations, it can save the computational cost of summing out
X. More importantly, the algorithm will be able to replace

∑
x P (x|pa(X)) with 1—a constant,

while the computation of
∑

x P (x|pa(x)) may return a potential whose domain is apparently
pa(X), and this may lead to including redundant variables in the policies.

An open line for future research is how to integrate in our variable elimination algorithm
the recent improvements for the lazy evaluation of IDs [18, 31], whose purpose is to avoid the
operations that yield unity potentials.

7According with [25], a chance or decision node without descendants is said to be barren.
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5 Empirical evaluation

We have performed a series of experiments for assessing the efficiency of the variable elimination
algorithm proposed in this paper. The first problem we faced is that we only have a few real-world
examples of IDs with SV nodes, and these are not complex enough for comparing the different
versions of our algorithm between themselves and with the arc reversal (AR) algorithm of Tatman
and Shachter. The repositories of graphical probabilistic models available on Internet do not
contain IDs with SV nodes. For this reason, we have run the experiments on randomly generated
IDs.

5.1 Algorithm for generating IDs randomly

Vomlelova [30] proposed an algorithm for randomly generating IDs with several (ordinary) utility
nodes. We have adapted and extended it in order to generate IDs with SV nodes. The parameters
of the algorithm are: nNodes, the total number of chance and decision nodes; decisionRatio, the
probability that a node is a decision (otherwise, it is a chance node); N, the number of iterations,
each adding or deleting an arc; nParents, the maximum number of parents for a chance or decision
node; nUtil , the number of ordinary utility nodes; and nParentsUtil, the number of parents per
utility node. The procedure for generating an ID is described by Algorithm 8.

We must note in step 13 that the fact that i and j are not ordered (step 12) implies that there
is no path from one node to the other. Therefore, drawing a link between them (step 13) can not
create a loop nor a cycle.

We have assigned random non-negative values to the potentials, with the only restriction that
probabilities must be normalized.

5.2 Experimental results

We executed the above algorithm with decisionRatio = 0.3, N = 300 (additions or removals of
arcs), nParents = 3, nUtil = 7, and nParentsUtil = 7. The number of nodes, nNodes, varied from
5 to 24. We generated 100 influence diagrams for each number of nodes, which amounts to a total
of 2,000 IDs. Figure 10 displays the graph of one of the influence diagrams generated.

Figure 10: A random influence diagram generated by Algorithm 8, with nNodes = 8.
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Algorithm 8 Generate a random ID

Input: nNodes, decisionRatio, N, nParents, nUtil and nParentsUtil (cf. Sec. 5.1).
Output: an influence diagram.
1: create a tree having nNodes nodes;
2: for each node, randomly decide whether it is a decision (with probability decisionRatio) or a

chance node;
3: for k = 1 to N do
4: select randomly a pair of distinct nodes i and j ;
5: if the arc i → j exists in the graph then
6: if the graph remains connected, delete this arc;
7: else
8: if the graph remains acyclic and the number of parents of j does not exceed nParents,

add the arc;
9: end if

10: end for
11: while there are at least two decisions i and j such that i /∈ ancestors(j) and j /∈ ancestors(i)

do
12: select two distinct decision nodes i and j such that i /∈ ancestors(j) and j /∈ ancestors(i);
13: randomly decide whether the arc i → j or i → j is added to the graph (with probability

0.5);
14: end while
15: generate nUtil ordinary utility nodes, each with nParentsUtil parents randomly selected among

the decision and chance nodes;
16: while there are several utility nodes without descendants do
17: if the number of utility nodes without descendants is greater than nParentsUtil then
18: randomly select nParentsUtil utility nodes without descendants and add arcs from them

to a new super-value node;
19: else
20: draw arcs from them to a new super-value node;
21: end if
22: randomly decide if the new super-value node is sum (with probability 0.5) or product;
23: end while
24: generate a probability table for each chance node;
25: generate a utility table for each ordinary utility node;

Each ID was evaluated with three algorithms: Tatman and Shachter’s arc reversal (AR),
variable-elimination without divisions (VE) and with divisions (VE-D). We only calculated the
global utility of the ID and the optimal policy for each decision because VE can not compute the
expected utility of each option.

All the algorithms employed the same elimination order of variables when evaluating each ID
in order to compare them in the same conditions. It was determined previously by evaluating the
ID qualitatively with Tatman and Shachter’s algorithm.8

The algorithms were implemented in Java 6.0 with the Elvira software package.9 The tests
were run on an Intel Core 2 computer (2.4 GHz) with 2 GB of memory under Windows XP.

8The time necessary to evaluate an ID qualitatively with AR is negligible compared with the time required by
a full evaluation. Therefore, the fact that VE and VE-D would need an additional amount of time to obtain the
elimination order does not affect the results of our experiments—see also Section 6.

9The Elvira program was developed as a collaborative project of several Spanish universities [7]. The source
code, a user manual, and other documents can be downloaded from www.ia.uned.es/~elvira.
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5.2.1 Comparison of AR, VE, and VE-D (without the subset rule)

Time and space efficiency First, we have computed for each ID the ratio of the times required
by AR and VE. Table 1 shows the results, grouped by the number of nodes. Given that the
distribution is very skewed, we show in this table both the median and the mean, as well as some
other percentiles.10

By observing the means (second column), we can see that on average VE is around 10 times
faster that AR. The last column in this table tells us that, for one ID, AR was 339 times slower
than VE—see also Figure 11.11 The 95th percentile column shows that in around 5% of cases VE
is at least 30 times faster than AR. On the contrary, the cases in which AR is faster than VE
(those in which the ratio is smaller than 1) are unfrequent, as shown by the 5th percentile column.

The minimum displayed in the table means that in the most favorable case for AR, it was only
5 times faster than VE, and this difference occurred for an ID having only 6 nodes, for which the
time spent by both algorithms is negligible. For bigger diagrams, AR could never be 2 times faster
than VE. In contrast, Figure 11 shows that for several influence diagrams VE was 50 or even over
100 times faster than AR, with a maximum of around 340.

When comparing the storage space required by these algorithms, we observe that in general
VE needs less memory than AR—see the “means” column in Table 2. In the case of large IDs, in
which the limit of memory is a critical issue, AR requires on average around 3 or 4 times more
space than VE, with a median ratio of almost 2. The 5th and 95th percentile columns in Table 2
also show the superiority of VE over AR in the case of large IDs: the former rarely needs twice
more space than the latter (the maximum shown in the ”min” column is 1/0.14 = 7 times), while
in 5% of the cases AR needs at least 10 times more space than VE (the maximum being almost
60). Correspondingly, in Figure 12 we can see that for several IDs AR needed 10, 20, and even 60
times more space than VE, which is a significant difference.

10The minimum, the median, and the maximum are the 0th, 50th, and 100th percentiles, respectively.
11In this figure we have used boxplots, which provide a graphical simple summary of a set of data. The top

and bottom of each box represent the upper and lower quartiles of each group of data, and the line in the middle
represents the median. Whiskers extend from each end of the box, and their extremes values are within 1.5 times
the interquantile range from the ends of the box. Outliers, represented by red circles, are individuals whose value
is higher or lower than the extremes of the whiskers.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 13.20 2.91 7.58 13.06 17.72 37.93
6 11.78 0.20 6.50 11.62 17.00 26.39
7 10.81 3.70 4.88 11.10 16.27 20.26
8 11.21 2.59 6.40 10.78 19.51 22.77
9 9.19 2.23 4.30 8.49 15.66 21.04
10 9.90 3.14 3.80 9.34 18.27 28.33
11 9.81 1.96 2.65 9.09 19.97 24.85
12 11.12 1.50 3.21 10.11 22.76 34.25
13 9.36 0.76 2.42 6.82 17.89 64.99
14 11.41 0.89 2.06 8.07 35.51 62.27
15 12.22 0.74 2.18 9.60 35.28 45.46
16 12.07 1.08 2.42 8.15 29.26 101.98
17 16.84 0.97 2.14 8.04 79.22 112.67
18 13.58 0.98 1.80 7.48 45.85 96.57
19 15.08 1.29 2.10 6.13 57.53 122.20
20 11.37 0.54 1.48 7.43 40.54 79.38
21 15.80 0.88 1.64 7.12 46.42 338.84
22 14.03 1.24 1.72 6.54 39.77 219.88
23 12.62 0.74 1.42 5.87 53.02 90.36
24 12.29 0.82 1.54 6.64 39.21 157.80

Total 12.18 0.20 2.16 9.15 30.76 338.84

Table 1: Ratio of the times required by AR and VE.
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Figure 11: Ratio of the times required by AR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.51 0.69 1.00 1.05 1.16
6 0.91 0.37 0.61 1.00 1.00 1.00
7 0.88 0.31 0.41 0.99 1.17 1.27
8 1.10 0.34 0.67 1.00 1.72 2.00
9 1.24 0.35 0.56 1.14 2.22 3.97
10 1.43 0.43 0.51 1.14 3.25 4.76
11 1.67 0.39 0.50 1.23 4.27 6.28
12 1.99 0.39 0.56 1.67 4.56 8.13
13 1.76 0.14 0.56 1.32 3.71 11.81
14 2.31 0.27 0.47 1.59 7.00 16.19
15 2.80 0.22 0.45 1.88 8.96 19.49
16 3.14 0.24 0.67 1.97 8.85 33.68
17 3.26 0.27 0.64 1.94 10.49 22.42
18 2.81 0.17 0.39 1.69 8.26 12.03
19 4.02 0.34 0.53 1.91 13.84 51.36
20 3.28 0.25 0.52 1.92 10.14 25.03
21 4.18 0.42 0.68 1.96 14.41 58.86
22 3.74 0.24 0.61 1.88 12.18 58.74
23 4.28 0.33 0.41 1.98 16.25 59.89
24 3.26 0.33 0.56 1.88 11.58 16.01

Total 2.45 0.14 0.55 1.29 7.75 59.89

Table 2: Ratio of the maximum storage space required by AR and VE.

We obtained very similar results when comparing AR and VE-D, both with respect to time
(Table 3 and Figure 13) and space (Table 4 and Figure 14). This result is coherent with the
experimental evidence that the performances of VE and VE-D are very close, both in terms of
time (Table 5) and space (Table 6). The cases in which VE is significantly more efficient than
VE-D, or vice versa, are very rare. If time or space are a critical issue for a decision-support
system based on an ID, it would be necessary to perform an ad-hoc comparison for that problem.
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Figure 12: Ratio of the maximum storage space required by AR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 13.82 3.79 7.16 14.11 19.37 38.86
6 12.35 4.83 7.06 12.35 18.97 28.98
7 11.05 3.21 4.51 11.54 16.80 21.66
8 11.15 2.46 6.20 10.66 19.77 22.69
9 9.15 1.97 4.42 8.63 15.96 21.76
10 9.76 2.90 3.75 9.33 19.19 26.14
11 9.57 1.71 2.69 8.98 19.68 25.46
12 10.40 1.24 2.84 9.72 23.04 29.81
13 9.13 0.76 2.25 6.40 18.25 62.42
14 10.97 0.94 1.86 8.02 30.74 63.37
15 12.09 0.73 2.07 9.70 32.85 53.59
16 11.40 1.48 2.29 7.76 27.46 94.86
17 17.11 0.78 2.11 7.05 89.70 146.80
18 12.72 0.82 1.81 7.30 46.44 97.43
19 13.70 0.78 1.73 5.09 64.95 109.88
20 11.21 0.54 1.33 6.47 44.98 71.09
21 14.47 0.82 1.39 6.09 43.20 339.83
22 12.54 0.94 1.43 5.80 39.20 153.88
23 13.14 0.70 1.21 4.93 59.17 151.10
24 14.19 0.74 1.37 5.79 39.36 277.02

Total 12.00 0.54 1.96 8.79 29.44 339.83

Table 3: Ratio of the times required by AR and VE-D.
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Figure 13: Ratio of the times required by AR and VE-D.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.49 0.70 1.00 1.05 1.16
6 0.91 0.36 0.61 1.00 1.00 1.00
7 0.88 0.30 0.41 1.00 1.16 1.26
8 1.09 0.34 0.66 1.00 1.68 2.03
9 1.23 0.35 0.56 1.13 2.22 3.97
10 1.43 0.44 0.54 1.14 3.26 4.80
11 1.70 0.39 0.50 1.23 4.56 6.28
12 1.95 0.39 0.53 1.60 4.57 8.13
13 1.78 0.14 0.56 1.34 3.70 11.30
14 2.32 0.26 0.47 1.65 6.91 16.25
15 2.85 0.22 0.51 1.92 8.98 19.58
16 3.18 0.27 0.67 1.97 9.81 33.68
17 3.26 0.26 0.57 1.93 10.49 22.48
18 2.84 0.17 0.39 1.71 8.29 12.03
19 3.96 0.08 0.46 1.79 14.22 50.10
20 3.53 0.25 0.51 1.91 11.11 31.48
21 4.00 0.43 0.66 1.95 13.91 40.44
22 3.77 0.23 0.62 1.85 11.68 58.74
23 4.68 0.33 0.41 1.97 17.72 58.20
24 3.66 0.33 0.57 1.87 12.47 48.24

Total 2.50 0.08 0.54 1.28 7.75 58.74

Table 4: Ratio of the maximum storage space required by AR and VE-D.
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Figure 14: Ratio of the maximum storage space required by AR and VE-D.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.23 0.67 0.99 1.39 4.07
6 0.96 0.02 0.79 0.97 1.19 1.41
7 1.00 0.67 0.82 0.98 1.16 2.48
8 1.01 0.69 0.86 1.00 1.24 1.39
9 1.01 0.39 0.81 1.00 1.19 1.31
10 1.03 0.79 0.88 1.01 1.21 1.35
11 1.03 0.42 0.80 1.00 1.33 1.51
12 1.08 0.58 0.91 1.03 1.44 1.94
13 1.06 0.43 0.83 1.02 1.44 1.77
14 1.06 0.74 0.85 1.01 1.42 1.71
15 1.03 0.27 0.77 1.02 1.33 1.42
16 1.08 0.63 0.73 1.06 1.45 1.64
17 1.16 0.51 0.80 1.03 1.52 7.90
18 1.12 0.50 0.86 1.08 1.50 1.90
19 1.34 0.69 0.81 1.11 1.70 20.82
20 1.12 0.32 0.80 1.05 1.69 2.05
21 1.15 0.28 0.87 1.10 1.52 1.86
22 1.15 0.48 0.82 1.11 1.58 2.42
23 1.17 0.19 0.77 1.11 1.68 3.46
24 1.13 0.10 0.64 1.11 1.63 1.87

Total 1.09 0.02 0.80 1.03 1.44 20.82

Table 5: Ratio of the times required by VE-D and VE.

Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.99 0.99 1.00 1.00 1.08
6 1.00 0.99 0.99 1.00 1.00 1.03
7 1.00 0.99 0.99 1.00 1.08 1.11
8 1.01 0.70 0.99 1.00 1.10 1.27
9 1.01 0.99 0.99 1.00 1.10 1.22
10 1.00 0.68 0.96 1.00 1.09 1.19
11 0.99 0.50 0.87 1.00 1.08 1.20
12 1.02 0.49 0.93 1.00 1.22 1.43
13 1.00 0.40 0.74 1.00 1.17 1.44
14 1.00 0.73 0.81 1.00 1.07 1.14
15 0.98 0.30 0.86 1.00 1.08 1.12
16 1.00 0.69 0.76 1.00 1.11 1.21
17 1.05 0.66 0.87 1.00 1.18 4.72
18 0.99 0.34 0.70 1.00 1.18 1.28
19 1.16 0.50 0.86 1.00 1.18 13.65
20 1.01 0.34 0.81 1.00 1.18 1.49
21 1.03 0.49 0.80 1.00 1.15 3.28
22 1.00 0.51 0.76 1.00 1.15 1.48
23 1.07 0.28 0.77 1.00 1.24 5.21
24 1.00 0.16 0.85 1.00 1.17 1.25

Total 1.02 0.16 0.89 1.00 1.12 13.65

Table 6: Ratio of the spaces required by VE-D and VE.

Redundant variables We have also recorded the cases in which one algorithm included more
redundant variables than the other: Table 7 shows that in 22.4% of cases (448 out of 2,000) VE
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included fewer redundant variables than AR, while AR outperformed VE only in 8 cases, i.e.,
0.4%. It means that for each case in which AR was superior, there were over 50 cases in which
VE was better.

AR VE VE-D Won
AR - 8 (0.4%) 5 (0.25%) 13 (0.33%)
VE 448 (22.4%) - 10 (0.5%) 458 (11.45%)

VE-D 461 (23.05%) 58 (2.9%) - 519 (12.98%)
Lost 909 (22.73%) 66 (1.65%) 15 (0.38%) 990 (8.25%)

Table 7: Comparison of the number of redundant variables between AR, VE and VE-D. Each
cell (i, j) shows how many times the algorithm in the i-th row outperformed the algorithm in
the j-th column. For instance, VE returned smaller policies than AR for 448 out of the 2,000
IDs (22.4%), while AR has beaten VE only in 8 cases. The Won column indicates how many
times each algorithm beat each of the others. The percentages in this column are computed over
2,000×2=4,000 cases, because each algorithm is compared twice for each ID. The interpretation
of the Lost column is similar. 990 is the number of cases in which there was not a tie.

Similarly, VE-D outperformed AR in 461 cases (23%), while the opposite happened only in
5 cases (0.25%); i.e., for each case in which AR returned fewer redundant variables, there were
almost 100 cases in which it returned more.

VE-D was also superior to VE: the former performed better in 58 cases (2.9%), while the latter
was superior in 10 cases (0.5%), a difference of almost 6 to 1. Therefore, if avoiding redundant
variables is a priority, we should use VE-D. Given that VE and VE-D have a similar efficiency in
time and space on average, we recommend VE-D as the default algorithm for evaluating IDs.

5.2.2 Effect of the subset rule

As mentioned in Section 4.2, Tatman and Shachter [29] proposed the subset rule (SR) as a heuristic
for reducing the storage space required by their arc reversal algorithm, but they did not provide
any empirical evidence of such saving of space. On the other hand, the application of the SR entails
a computational cost, which might make it counterproductive, as we discussed in Section 4.2. For
this reason, we thought it would be worthy to test empirically the utility of the SR.

First we analyzed the impact of that rule on the space requirements of AR. (We denote by
AR-SR the version of arc reversal that uses the subset rule.) Contrary to the intuition by Tatman
and Shachter, in most of the cases the SR did not save any space in general: if we measure the
maximum storage space of both algorithms and compute the ratio sAR-SR/sSR, we see that the
mean of ratios is 1.00, up to rounding errors, and the median is exactly 1—cf. Table 8. There were
cases in which AR-SR saved space, but they were quite unfrequent and in general the difference
was negligible; only in some exceptional cases the ratio reached values as low as 0.56 or 0.69, which
means that the SR saved around half the storage space. More surprisingly, in other cases, also
very exceptional, AR-SR required 1.82 or 2.29 times more space than AR. When we compared
the computational times, we found slightly bigger differences (cf. Table 9): in one case AR-SR
was almost twice faster, but in others AR was between 2 and 4 times faster. Given the scarce
number of cases in which there was a significant difference and the opposite signs of the differences,
the only conclusion that we can draw is that in general the SR has virtually no impact on the
performance of the arc reversal algorithm.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.90 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 0.90 1.00 1.00 1.00 1.16
8 0.99 0.84 0.94 1.00 1.00 1.00
9 0.99 0.88 0.96 1.00 1.00 1.00
10 1.00 0.95 0.97 1.00 1.00 1.00
11 1.00 0.89 0.98 1.00 1.00 1.00
12 1.00 0.89 0.97 1.00 1.00 1.25
13 1.00 0.96 0.98 1.00 1.00 1.00
14 1.00 0.98 0.99 1.00 1.00 1.00
15 1.00 0.96 0.99 1.00 1.00 1.00
16 1.00 0.98 0.99 1.00 1.00 1.00
17 0.99 0.56 0.99 1.00 1.00 1.00
18 1.00 0.99 1.00 1.00 1.00 1.00
19 1.00 0.69 0.99 1.00 1.00 1.82
20 1.00 1.00 1.00 1.00 1.00 1.00
21 1.00 1.00 1.00 1.00 1.00 1.00
22 1.00 0.99 1.00 1.00 1.00 1.00
23 1.00 0.99 1.00 1.00 1.00 1.00
24 1.01 1.00 1.00 1.00 1.00 2.29

Total 1.00 0.56 0.99 1.00 1.00 2.29

Table 8: Ratio of the spaces required by AR-SR and AR.

Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.03 0.77 0.93 1.00 1.08 3.92
6 1.01 0.45 0.95 1.00 1.09 2.78
7 0.99 0.78 0.92 1.00 1.05 1.24
8 0.99 0.73 0.89 0.99 1.08 1.18
9 1.00 0.87 0.95 1.00 1.07 1.22
10 0.99 0.83 0.93 0.99 1.05 1.15
11 1.00 0.86 0.92 1.00 1.03 2.13
12 1.00 0.88 0.94 1.00 1.04 1.66
13 0.98 0.66 0.91 0.99 1.03 1.14
14 0.99 0.78 0.91 1.00 1.03 1.08
15 0.99 0.87 0.93 1.00 1.02 1.19
16 0.99 0.76 0.87 1.00 1.04 1.34
17 0.98 0.83 0.91 1.00 1.01 1.04
18 0.99 0.78 0.89 1.00 1.04 1.10
19 0.98 0.74 0.90 0.99 1.02 1.29
20 0.98 0.80 0.88 1.00 1.01 1.03
21 0.99 0.83 0.91 1.00 1.00 1.05
22 0.98 0.83 0.91 1.00 1.01 1.05
23 0.98 0.84 0.88 1.00 1.01 1.06
24 0.99 0.75 0.89 1.00 1.01 1.83

Total 0.99 0.45 0.91 1.00 1.03 3.92

Table 9: Ratio of the times required by AR-SR and AR.

We then studied the effect of that rule on our variable elimination algorithm. When we com-
pared VE (without divisions and without the subset rule) with VE-SR (with the subset rule), we
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found no consistent difference in the maximum storage space (cf. Table 10) nor in the computa-
tional time (cf. Table 11), even thought the differences seemed to be slightly higher than in the
comparison of AR with AR-SR. We might be tempted to say, after looking at the “mean” columns
of those tables, that the subset rule reduces slightly the maximum storage space for large IDs, on
average, at the expense of increasing the time of computation, as we expected, but a look at the
“median” column makes this conclusion doubtful.

Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.97 0.68 0.84 1.00 1.00 1.06
6 0.97 0.73 0.87 1.00 1.00 1.05
7 0.98 0.68 0.89 0.99 1.02 1.28
8 0.97 0.75 0.86 0.98 1.04 1.49
9 0.94 0.50 0.69 0.97 1.00 1.18
10 0.94 0.42 0.70 0.97 1.05 1.19
11 0.94 0.53 0.64 0.98 1.02 1.53
12 0.96 0.54 0.76 0.98 1.02 1.60
13 0.94 0.37 0.67 0.99 1.02 1.61
14 0.97 0.52 0.65 0.99 1.06 3.59
15 0.96 0.39 0.77 0.99 1.00 1.89
16 0.95 0.64 0.68 0.99 1.04 1.92
17 0.96 0.45 0.72 0.99 1.02 1.99
18 0.95 0.40 0.67 0.99 1.10 1.50
19 0.99 0.44 0.61 1.00 1.26 2.30
20 0.95 0.38 0.67 1.00 1.00 1.17
21 0.95 0.39 0.68 1.00 1.00 1.02
22 0.92 0.43 0.53 1.00 1.00 1.59
23 0.96 0.36 0.68 1.00 1.00 1.76
24 0.93 0.52 0.67 1.00 1.00 1.24

Total 0.95 0.36 0.68 0.99 1.01 3.59

Table 10: Ratio of the spaces required by VE-SR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.52 0.70 0.95 1.26 2.28
6 0.97 0.02 0.77 0.98 1.16 1.54
7 0.97 0.66 0.72 0.99 1.15 1.32
8 1.00 0.70 0.82 0.99 1.20 2.10
9 1.00 0.62 0.71 0.99 1.24 2.91
10 0.99 0.53 0.73 0.99 1.24 1.58
11 1.04 0.35 0.71 1.01 1.52 2.22
12 1.06 0.67 0.81 1.03 1.31 2.36
13 1.00 0.59 0.74 1.00 1.26 1.81
14 1.09 0.53 0.77 1.02 1.33 6.50
15 1.05 0.54 0.74 1.04 1.43 1.94
16 1.04 0.52 0.71 1.02 1.48 2.06
17 1.07 0.64 0.76 1.04 1.48 1.90
18 1.06 0.59 0.78 1.04 1.33 1.85
19 1.09 0.60 0.75 1.04 1.62 2.00
20 1.06 0.39 0.78 1.04 1.40 1.69
21 1.04 0.42 0.79 1.03 1.32 1.73
22 1.05 0.59 0.68 1.04 1.49 2.20
23 1.06 0.43 0.75 1.04 1.34 1.68
24 1.00 0.25 0.71 1.00 1.30 1.80

Total 1.03 0.02 0.74 1.02 1.34 6.50

Table 11: Ratio of the times required by VE-SR and VE.

Interestingly, in the case of the VE-D algorithm, the subset rule seems to save both time and
space for large IDs, but the average difference is small and the medians show no difference in
storage space (Table 12) nor in computational time (Table 13).

Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.98 0.69 0.82 1.00 1.00 1.00
6 0.99 0.73 0.91 1.00 1.00 1.00
7 0.98 0.69 0.84 1.00 1.00 1.00
8 0.97 0.75 0.84 1.00 1.00 1.05
9 0.95 0.49 0.71 1.00 1.00 1.00
10 0.94 0.43 0.68 1.00 1.00 1.00
11 0.93 0.51 0.64 1.00 1.00 1.00
12 0.94 0.52 0.72 1.00 1.00 1.00
13 0.93 0.37 0.67 1.00 1.00 1.06
14 0.92 0.42 0.58 0.99 1.00 1.00
15 0.92 0.42 0.61 1.00 1.00 1.00
16 0.94 0.59 0.67 1.00 1.00 1.00
17 0.93 0.30 0.67 1.00 1.00 1.04
18 0.92 0.34 0.60 1.00 1.00 1.00
19 0.93 0.44 0.54 1.00 1.00 1.00
20 0.93 0.46 0.62 1.00 1.00 1.00
21 0.94 0.40 0.69 1.00 1.00 1.00
22 0.89 0.33 0.48 1.00 1.00 1.00
23 0.93 0.34 0.58 1.00 1.00 1.00
24 0.89 0.39 0.59 1.00 1.00 1.00

Total 0.94 0.30 0.66 1.00 1.00 1.06

Table 12: Ratio of the spaces required by VE-D-SR and VED.

33



Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.11 0.50 0.68 0.95 1.15 18.16
6 0.98 0.60 0.76 0.98 1.22 1.85
7 0.98 0.34 0.74 0.98 1.24 1.99
8 0.99 0.59 0.75 0.98 1.23 1.93
9 0.93 0.57 0.67 0.97 1.08 1.29
10 0.97 0.52 0.72 0.97 1.15 2.53
11 0.96 0.49 0.73 0.97 1.18 1.72
12 0.96 0.40 0.74 0.98 1.13 1.47
13 0.97 0.50 0.74 0.99 1.09 1.93
14 0.95 0.44 0.67 0.99 1.15 1.24
15 0.96 0.52 0.73 0.98 1.12 1.28
16 0.97 0.49 0.70 1.00 1.15 1.76
17 0.97 0.48 0.72 1.00 1.13 1.26
18 0.94 0.50 0.65 0.98 1.13 1.29
19 0.95 0.48 0.60 0.99 1.13 1.26
20 0.97 0.55 0.67 1.00 1.15 1.20
21 0.96 0.44 0.74 1.00 1.14 1.26
22 0.93 0.46 0.65 0.97 1.09 1.26
23 0.96 0.43 0.68 1.00 1.13 1.22
24 0.93 0.52 0.60 0.95 1.09 1.16

Total 0.97 0.34 0.70 0.99 1.14 18.16

Table 13: Ratio of the times required by VE-D-SR and VED.

6 Related work and future research

There are several variable elimination algorithms for IDs proposed in the literature [3, 4, 11, 27, 12],
but none of them can evaluate IDs with super-value nodes. The algorithm that we have presented
in this paper can be seen as an extension of those methods, designed as an alternative to the arc
reversal algorithm by Tatman and Shachter [29], the only one that could evaluate IDs super-value
nodes.

A problem of all these algorithms, including ours, is that they occasionally introduce redundant
variables—see Section 1.3. Several algorithms have been proposed in the literature for detecting
structurally redundant variables by analyzing the graph [8, 19, 21, 26, 31], but none of them can
analyze IDs with super-value nodes. One of the advantages of the algorithm that we have proposed
is that it rarely introduces redundant variables (see the experimental results in Sec 5.2.1). However,
in some real-world applications it might be desirable to ensure that the decision-support system
does not include any redundant variable at all, and for this reason we will propose in a future work
an algorithm for eliminating them in the case of IDs with super-value nodes. This algorithm must
take into account the distinction between structurally redundant and quasi-structurally redundant
variables (cf. Sec. 1.3), which is one of the contributions of this paper.

Another element of crucial importance for the efficiency of algorithms for IDs (as in the case of
Bayesian networks) is finding an efficient elimination order. In the first experiments that we carried
out, our algorithm randomly selected the elimination order inside each Ci (let us remember that
Ci is the set of variables unknown for decision Di and known for Di+1). In those experiments our
algorithm was faster than AR in general, but it usually required more memory. Then we realized
that one of the advantages of AR is that it automatically detects sink nodes, i.e., nodes having no
outgoing arcs towards chance or decision nodes [22, 25]12. When we forced our VE algorithm to
use the elimination order as AR, VE was able to outperform AR not only in time efficiency, but

12AR takes profit of sink nodes by eliminating them without performing any numerical computation. In turn,
VE can take profit of them because they lead to unity potentials—see Sec. 4.3.
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also by requiring less storage space, as shown in Section 5.2.13

However, it might be desirable to have a method for finding the optimal elimination order for
VE, which is not necessarily optimal for AR. However, given that finding the optimal elimination
ordering for a Bayesian network is NP-complete, we conjecture that finding the optimal elimination
order for VE is also NP-complete. For this reason, we should concentrate our efforts on developing
heuristics that return near-optimal orderings. This a very difficult issue even when the ID has only
one utility node [9], and becomes much more complex when the utility function is given by an ADG
of potentials, since the basic operations of our algorithm (distribution and variable elimination)
treat sum nodes in a very different way from product nodes, and treat chance variables differently
from decision variables. A solution to this problem might be to examine different orderings, as
in [9]: we can operate on the ADGoP, but instead of perfoming the numerical computations, we
estimate their computational cost by analyzing the size of the potentials.

There is another line of improvement for our algorithm. The reason why VE and VE-D are
not always better than AR is that, even though they try to preserve the separability of the utility
function when eliminating a variable, sometimes the subsequent elimination of other variables
merges the potentials that we wished to keep separate. This way some distributions become
counterproductive, first because they increase the storage space and second because they prevent
the algorithm from detecting common factors, as shown in Section 2.2.2. Therefore, the methods
unfork and distribute, which in the current version of the algorithm only focus on the variable to
be eliminated, should be refined in order to take into account the effect of the next eliminations.

We might try to solve both problems at the same time: we might assess the cost of different
elimination orderings and different distribution strategies—also analyzing the number of redundant
variables introduced by each one of them—and then perform the numerical computations for the
optimal combination. However, it would be necessary to prove empirically that the time spent in
the qualitative evaluation of several possibilities is compensated by finding a more efficient path
for the evaluation of the ID.

Finally, it would be interesting to investigate how the ideas exposed in [30] to extend lazy
evaluation to IDs without super-value nodes could be integrated with our algorithm and applied
to more general IDs. This might avoid unnecessary multiplications and subsequent divisions, and
also avoid redundant variables in the policies.

7 Conclusion

As we said in the beginning, we wished to develop a variable-elimination (VE) algorithm for IDs
with supervalue nodes having five advantages over the arc reversal (AR) algorithm by Tatman
and Shacher [29]: is faster, requires less memory, avoids redundant variables, simplifies sensitivity
analysis, and can take profit of canonical models.

We have conducted some experiments to find out if we have succeded in the first three objetives.
The analysis of 2,000 IDs randomly generated shows, in the first place, that on average VE is
around 10 times faster than AR, especially for large IDs and in 5% of cases it is at least 30 times
faster; for some IDs, it was between 100 and 340 times faster. In contrast, the cases in which AR
is faster than VE are unfrequent and the differences are much smaller: for IDs having more than
6 nodes, AR could never be twice faster than VE.

In the second place, AR requires on average 3 or 4 times more space than VE, with a median
ratio of about 2. For 5% of the IDs, AR needs at least 10 times more space. In several cases, it
needed between 20 and 60 times more space. On the contrary, the cases in which VE required
more memory are unfrequent and the differences are much smaller.

Third, our experiments showed that for each case in which AR introduces fewer redundant
13Fortunately, it is possible to feed our algorithm with the elimination order used by AR without incurring in

the cost of completely executing the algorithm by Tatman and Shachter: it suffices to reverse arcs and delete nodes
from the graph without performing any numerical computation. Given that these operations only focus on the
neighbors of each node, the cost of obtaining the elimination order is absolutely negligible compared to the cost of
operating with potentials.
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variables than VE, there are over 50 in which VE is superior. A version of VE with division of
probability potentials (VE-D) is even better: for each case in which AR introduces fewer redundant
variables, there were almost 100 in which VE-D beat AR. Given that the time and space efficiency
of VE-D is not worse than VE, we recommend VE-D as the default algorithm for evaluating IDs
with super-value nodes.

Forth, our algorithm can simplify sensitivity analysis by keeping track of which potentials have
been involved in the computation of the (new) potentials on which maximizations are performed
—see Section 2.2.1.

Fifth, we have not tested empirically the time and space savings that our variable elimina-
tion algorithm can provide for IDs containing canonical models, such as the noisy OR/MAX [5].
However, the important savings obtained by the integration of variable elimination and canonical
models in the case of Bayesian networks (see Section 1.1 and [6]) indicate that similar savings
might be obtained for IDs.

In summary, we conclude that we have attained, to different degrees, the five objectives set at
the beginning of our research.

A minor contribution of this paper is the empirical evaluation of the subset rule [29], which—as
far as we know—had never been tested before. Our experiments have shown that for most IDs the
impact of this rule is null or almost null and, contrary to our expectations, it can either increase
or decrease the time and space spent by the algorithms (see Section 5.2.2).

Three main issues must be investigated in order to refine our algorithm: how to avoid in-
troducing redundant variables at all, how to find near-optimal elimination orderings, and how to
combine our algorithm with the recent proposals for the lazy evaluation of traditional IDs, in order
to reduce the computational cost of evaluating IDs with super-value nodes.
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A Appendices

A.1 Proof of Theorem 8

Before proving the theorem, we introduce a definition and a lemma.

Definition 11 The number of summands of the expansion of a ToP rooted at node n, denoted
by s(n), is defined recursively as follows. If n is a terminal node, then s(n) = 1. If n has
m children, n1, . . . , nm, and n is of type sum, then s(n) =

∑m
i=1 s(ni); if n is of type product,

s(n) =
∏m

i=1 s(ni).

Lemma 12 When the method distribute (Algorithm 1) is applied to a node n having a child of
type sum, n1, then s(n′1,l) < s(n) for each child n′1,l of n1 in the new ToP (see Figure 4).

Proof. We have that s(n) = s(n1) · . . . · s(nm), which implies that s(n) ≥ s(n1). Given that n1

has more than one child and s(n1) =
∑k

l=1 s(n1,l), then s(n1) > s(n1,l) for all l, s(n1) > 1, and
s(n) > s(n2). If n1,l was a terminal node, then s(n′1,l) = s(n2) and s(n′1,l) < s(n). If n1,l was a
non-terminal node then s(n′1,l) = s(n1,l) · s(n2) < s(n1) · s(n2) ≤ s(n1) · . . . · s(nm) = s(n), which
proves the lemma.

Proof of Theorem 8. We prove it by induction on the number of summands of the root of the
tree, s(r), taking into account that the number of children of every node is finite. If s(r) = 1 then
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the tree has only one terminal node or one product node having a finite number of leaves, and
clearly the algorithm terminates. Let us now assume that the theorem holds for every tree such
that s(r) ≤ k and let us examine a tree such that s(r) = k + 1, where k ≥ 1. If r is of type sum,
then each subtree of r has at most k summands (because r has at least two children), and therefore
the unfork method terminates for each child of r and for r itself. If r is of type product, then at
least one of the children of r, say ni, must be of type sum (otherwise s(r) would be 1). Therefore,
the number of summands for the other children of r is at most (k +1)/2, and (k +1)/2 ≤ k, which
means that unfork terminates for those children. Similarly, the number of summands of each child
of ni is at most k, which means that the algorithm terminates for each child of ni and for ni itself.
When all the children of r have processed the unfork message, it may happen that two of them,
say n1 and n2, depend on A. It is then necessary to distribute one of them, say n2, wrt the other,
as shown in Figure 4, and to send again the message unfork to n1. Since the lemma above states
that s(n′1,l) < s(n), then s(n′1,l) ≤ k, and the unfork method terminates for the children of n1

and, consequently, for n1 itself. If r has still other children that depend on A, they must also be
distributed wrt n1, but the process terminates for each of those other children, and given that the
number of children of r is finite, the whole process terminates.

A.2 Proof of Theorem 9

Proof. We prove the theorem by induction on the depth of the ToP, d. Clearly, the theorem
holds for d = 1. Let us assume that the theorem holds for any tree whose depth is not greater
than d and that there is a tree t of depth d + 1, whose root r has m children, n1, . . . , nm, such
that each node ni represents a potential ψi. If r is a sum node, the potential represented by r is:

ψ = ψ1 + . . . + ψm .

Therefore, ∑

A

ψ =
∑

A

ψ1 + . . . +
∑

A

ψm ,

and, according with the induction hypothesis, each potential
∑

A ψi can be obtained by summing
out A on the terminal nodes that depend of A. If r is a product node, at most one of its children
will depend on A, because the tree is non-forked. If none of them depends on A, then

∑
A ψ = ψ

and the theorem holds. If one potential, say ψj , depends on A, then

∑

A

ψ =
∑

A

m∏

i=1

ψi =


∏

i 6=j

ψi


 ∑

A

ψj .

Since the depth of the tree rooted at nj is d, the theorem holds because of the induction hypothesis.

A.3 Correctness of the algorithm VE-D

We prove now the correctness of VE-D (cf. Section 4.1), which eliminates the variables by applying
Algorithm 7 iteratively.

Given an ID, let {V1, . . . , Vn} be a valid elimination sequence for that ID, i.e., a sequence in
which the first variables are those in Cn, then Dn, then those in Cn−1, and so on; the last variables
are D1 and those in C0. Because of Equations 1 and 2,

MEU = op
vn

. . . op
v1

P (vC : vD) · ψU0(fPred(U0)) , (25)

where op is an operator that depends on the type of variable to be eliminated,

op
vi

=
{ ∑

vi
if Vi ∈ VC

maxvi if Vi ∈ VD ,
(26)
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and P (vC |vD) is a family of probability distributions defined as follows:

P (vC |vD) =
∏

Vi∈VC

P (vi|pa(Vi)) (27)

i.e., for each configuration vD we have a probability distribution defined on VC .
We define V0 as the set of all the variables, V0 = VC ∪VD, and Vi as the set of variables

remaining after eliminating Vi:

∀i, 1 ≤ i ≤ n, Vi = Vi−1\{Vi} . (28)

Clearly, Vn = ∅. Analogously, Vi
C is the set of chance variables remaining after eliminating Vi,

Vi
C = Vi ∩VC , and Vi

D = Vi ∩VD. Therefore, Vi−1
C contains all the variables remaining when

Vi is to be eliminated.

Lemma 13 If Vi is a decision, then P (vi−1
C |vD) does not depend on V̌i

D, where V̌i
D = VD\Vi

D.

Please note that Vi−1
C is the set of chance variables remaining before eliminating Vi, Vi

D is
the set of decisions remaining after eliminating Vi, and therefore V̌i

D includes Vi and the decisions
eliminated before Vi.

Before proving the lemma, we illustrate it with an example.

Example 14 Coming back to the ID in Example 10 on page 18 (Fig. 9), Equation 27 tells us that

P (vC |vD) = P (a, b, c, e|d1, d2) = P (a) · P (b|a) · P (c|a, d1) . (29)

The only valid elimination sequence is {V1 = A, V2 = D2, V3 = C, V4 = D1, V5 = B}. The first
decision eliminated is V2 (D2) and the second one is V4 (D1). Let us focus on the former. In this
case, i = 2, Vi−1 = {D2, C, D1, B}, Vi−1

C = {C, B}, and P (vi−1
C |vD) = P (c, b|d1, d2). We also

have Vi
D = {D1} and V̌i

D = {D2}. The lemma states that P (c, b|d1, d2) does not depend on d2,
which is obvious, because P (c, b|d1, d2) =

∑
a P (a, b, c|d1, d2) =

∑
a P (a) · P (b|a) · P (c|a, d1) and

none of the factors inside the last summatory depends on d2. Let us focus now on the second deci-
sion eliminated, D1. Then, i = 4, Vi−1 = {D1, B}, Vi−1

C = {B}, and P (vi−1
C |vD) = P (b|d1, d2).

We also have Vi
D = ∅ and V̌i

D = {D1, D2}. The lemma states that P (b|d1, d2) does not depend
on d1 nor on d2. This result is not obvious, because apparently P (b|d1, d2) depends on d1:

P (b|d1, d2) =
∑

a

∑
c

P (a, b, c, e|d1, d2) =
∑

a

∑
c

P (a) · P (b|a) · P (c|a, d1) . (30)

Now, we prove the lemma.
Proof. We build a Bayesian network (BN) as follows: we create a chance node for each variable
in V. If Vi is a chance variable in the ID, we draw a link from each node that was a parent of Vi

in the ID; the conditional probability distribution of Vi in the BN is the same as in the ID. If Vi

is a decision in the ID, then Vi has no parents in the BN; we assign it an arbitrary distribution,
for instance, a uniform probability. [The BN for the ID in Figure 9 is shown in Figure 15.] If
PBN (v) is the join probability of the BN, then it follows from Equation 27 that

P (vC |vD) = PBN (vC |vD) (31)

and, consequently,
P (vi−1

C |vD) = PBN (vi−1
C |vD) . (32)

Now we focus on the decision Vi. In the BN, Vi−1
C is conditionally independent of V̌i

D given
Vi

D, for the following reason: In the BN the nodes that correspond to decisions in the ID do not
have parents. Therefore, any path departing from a decision Vj in V̌i

D (Vj can be Vi itself) must
pass through a child of Vj , that we call X, which was a chance variable in the ID. This node X
and its descendants have been eliminated before Vi and before Vj , because a descendant of Vj
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B CAD1 D2
Figure 15: Bayesian network for the ID in Figure 9 (see the proof of Lemma 13).

can not be an informational predecessor of any of these decisions. Additionally, no node in Vi
D

is a descendant of Vj . This implies that any path from any node in V̌i
D to the any node in Vi−1

C

is inactive given Vi
D, in the sense of d-separation [23], and consequently Vi−1

C is conditionally
independent of V̌i

D given Vi
D.14 From the fact that Vi−1

C is conditionally independent of V̌i
D

given Vi
D, we conclude thatp

P (vi−1
C |vD) = PBN (vi−1

C |vi
D, v̌i

D︸ ︷︷ ︸
vD

) = PBN (vi−1
C |vi

D) , (33)

which proves that P (vi−1
C |vD) does not depend on V̌i

D.

We define φ0 as the set of all the probability potentials, φ0 = {P (vi|pa(Vi)) |Vi ∈ VC}, and
φi as the list of probability potentials (LoPP) handled by VE-D after eliminating variable Vi. We
denote by Πφi the product of all the potentials in φi.

Proposition 15 At each step of algorithm VE-D, the list of probability potentials (LoPP) repre-
sents the probability of the chance variables that have not been eliminated yet:

∀i, 0 ≤ i ≤ n, Πφi = P (vi−1
C |vD) . (34)

Proof. We prove it by induction on i. When i = 0, i.e., before eliminating any variable, the
LoPP contains all the conditional probability potentials that define the ID, i.e., φ0; in this case,
the proposition holds because of Equation 27. Let us assume that it holds for i− 1:

Πφi−1 = P (vi−1
C |vD) . (35)

We divide φi−1 in two sets: φi−1
+ contains the potentials that depend on Vi and φi−1

− those that
do not. If Vi is a chance variable, then Vi

C = Vi−1
C \{Vi} and

P (vi
C |vD) =

∑
vi

P (vi
C , vi︸ ︷︷ ︸
vi−1

C

|vD) =
∑
vi

Πφi−1 = Πφi−1
−

∑
vi

Πφi−1
+

︸ ︷︷ ︸
φ∗Vi

= Πφi . (36)

Algorithm 7 just implements this equation, because it leaves in the LoPP the potentials that
do not depend on Vi, namely φi−1

− , and replaces those that depend on Vi with a new potential
φ∗Vi

computed by multiplying all those potentials and summing out Vi. If Vi is a decision, then
P (vi−1

C |vD) does not depend on Vi, because of Lemma 13. Given that P (vi−1
C |vD) = Πφi−1

+ ·Πφi−1
−

and no potential in φi−1
− depends on Vi, then Πφi−1

+ can not depend on Vi. Therefore,

P (vi−1
C |vD) = Πφi−1 = Πφi−1

− · projectVi
Πφi−1

+︸ ︷︷ ︸
φ∗Vi

= Πφi . (37)

14Coming back to Example 14, when eliminating D2 (i = 2), we have P (vi−1
C |vD) = P (b, c|d1, d2) =

PBN (b, c|d1, d2). Because of d-separation (see Figure 15), PBN (b, c|d1, d2) = PBN (b, c|d1), which explains why
P (b, c|d1, d2) does not depend on D2.

When eliminating D1 (i = 4), we have P (vi−1
C |vD) = P (b|d1, d2) = PBN (b|d1, d2). Again, because of d-

separation, PBN (b|d1, d2) = PBN (b), which explains why P (b|d1, d2) does not depend on D1 nor on D2.

39



Given that Vi = Vi−1\{Vi} and Vi is a decision, then Vi
C = Vi−1

C and

P (vi
C |vD) = P (vi−1

C |vD) = Πφi . (38)

Theorem 16 We have

∀i, 0 ≤ i ≤ n, MEU = op
vn

. . . op
vi+1

Πφi · ψi , (39)

where ψi is the potential represented by the ADG of utility potentials (ADGoUP) after algorithm
VE-D has eliminated variable Vi.

Proof. We prove it by induction on i. The theorem holds for i = 0 because Πφ0 = P (vC |vD)
and originally the ADGoUP represents the utility of the ID: ψ0 = ψU0(fPred(U0)). Let us assume
that it holds for i− 1:

MEU = op
vn

. . . op
vi

Πφi−1 · ψi−1 . (40)

If Vi is a chance variable,

op
vi

Πφi−1 · ψi−1 =
∑
vi

Πφi−1 · ψi−1 (41)

= φi−1
−

∑
vi

Πφi−1
+ · ψi−1 (42)

= φi−1
− · φ∗Vi︸ ︷︷ ︸

φi

∑
vi

φVi

φ∗Vi

· ψi−1

︸ ︷︷ ︸
ψi

, (43)

where φVi and φ∗Vi
are defined as in Algorithm 7: φVi = Πφi−1

+ and φ∗Vi
= φVi . When comparing

this equation with Algorithm 7, is is clear that

op
vi

Πφi−1 · ψi−1 = φi · ψi (44)

If Vi is a decision, then Πφi−1 does not depend on Vi and

op
vi

Πφi−1 · ψi−1 = max
vi

Πφi−1 · ψi−1 (45)

= Πφi−1 max
vi

ψi−1 (46)

= Πφi−1
− ·Πφi−1

+︸ ︷︷ ︸
φ∗Vi

·max
vi

ψi−1

︸ ︷︷ ︸
ψi

. (47)

As Πφi−1
+ does not depend on Vi, Πφi−1

+ = projectViΠφi−1
+ = φ∗Vi

. On the other hand, ψi =
maxvi ψi, which implies that Equation 44 also holds when Vi is a decision. This result, together
with Equation 40, proves the theorem.

Corollary 17 For every ID, Algorithm 7 returns the MEU and an optimal policy.
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