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Abstract

The hardest task in knowledge engineering for probabilistic graphical models, such
as Bayesian networks and influence diagrams, is obtaining their numerical parameters.
Models based on acyclic directed graphs and composed of discrete variables, currently most
common in practice, require for every variable a number of parameters that is exponential
in the number of its parents in the graph, which makes elicitation from experts or learning
from databases a daunting task. In this paper, we review the so called canonical models,
whose main advantage is that they require much fewer parameters. We propose a general
framework for them, based on three categories: deterministic models, ICI models, and
simple canonical models. ICI models rely on the concept of independence of causal influence
and can be subdivided into noisy and leaky. We then analyze the most common families
of canonical models (the OR/MAX, the AND/MIN, and the noisy XOR), generalizing
them and offering criteria for applying them in practice. We also briefly review temporal
canonical models.
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1. Introduction

Over the last two decades, probabilistic graphical models have become a popular tool for
modeling uncertain domains. Their most prominent representatives, Bayesian networks [67]
and influence diagrams [41], have found a variety of practical applications in domains such as
medicine, machine diagnosis, vision, robotics, and many others. While probabilistic graphs
have reduced the complexity of the representation of the joint probability distribution,
Bayesian updating even in the simplest, discrete acyclic directed graphs has been shown to
be NP-hard [6]. Still, the hardest part of practical fielding of this methodology turns out
not to be its computational complexity but rather building sizeable practical models.

Construction of graphical probabilistic models, such as Bayesian networks and influence
diagrams, requires specification of many conditional probability distributions of the form
P (y|x), where X = {X1, . . . , Xn} is the set of parents of a node Y in the network—see
Figure 1. Most graphical models built nowadays use only discrete variables, quite likely due
to the scarcity of flexible modeling tools and algorithms for Bayesian updating in the general
case. Discrete joint probability distributions are usually given in the form of conditional
probability tables (CPTs), which consist of a collection of discrete probability distributions
of a variable conditional on its parents in the underlying directed graph. The size of CPTs of
a variable Y grows exponentially with the number of parents of Y . In general, the numerical
parameters are obtained from databases or assessed by human experts and, for this reason,
it is usually difficult to build a CPT for a family having more than a three or four parents.
In case of a database, the difficulty arises when certain configurations of the parents are not
represented in the database. For instance, when X represents the set of diseases that may
cause a certain anomaly Y , and x is a particular configuration corresponding to the presence
of several infrequent diseases, it is quite likely that the database contains no patient for that
configuration. In case the parameters are elicited from experts, the task of estimating the
probability of infrequent configurations is even more daunting, because the expert may have
never seen such combinations. Additional difficulties arise when the number of probabilities
to be estimated is high, because of the limited time available for interaction with experts.
The problem is best illustrated by the experience of one of our colleagues, who built a
sizeable Bayesian network model for medical diagnosis. She reported a remark that her
expert jokingly made: “Every time you come I have a headache when you leave,” because
of the quantity of numerical probability elicitations that she asked of the expert.1

One way of reducing the complexity of elicitation of numerical probabilities is to rely on
so-called canonical models, which allow for building probability distributions from a small
number of parameters. The term “canonical” is used because such models are elementary
units used in the construction of more complicated models [67]. In practice, each canonical
model represents a probabilistic relation of the form P (y|x), which involves a finite number
of variables, {Y, X1, . . . , Xn}, usually called a family, such that node Y is called the child and
the Xis are called parents. This terminology proceeds from assuming that those variables
make part of a probabilistic ADG having a directed link Xi → Y for each Xi (see Figure 1).
However, these canonical models can also be embedded in other probabilistic formalisms,
such as Markov networks, chain graphs, or factorized Markov decision processes.

1. Personal communication with Dr. Concha Bielza, referring to the construction of the influence diagram
IctNeo [31].
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Figure 1: A family consisting of a child node Y and its parents, Pa(Y ) = X =
{X1, . . . , Xn}. The qualitative information associated with this family of nodes
consists of a conditional probability distribution of Y for each configuration x:
P (y|x). If all the variables are discrete, this set of distributions can be expressed
in the form of a conditional probability table (CPT).

Different canonical models may coexist in any probabilistic network. For instance, in
causal Bayesian networks that model real-world domains, it is not uncommon that a sig-
nificant number of families interact through OR/MAX-models, a few through AND-models
and the rest of the families do not correspond to any canonical model, which implies that
their CPT must be explicitly given.

Canonical models are useful not only because they simplify the construction of prob-
abilistic models (knowledge engineering), but also because they save storage space and
computation time [12, 83] and because they correspond to causal patterns that can ex-
ploited to generate user explanations [52]. Although canonical models are increasingly used
in probabilistic expert systems, we believe that their advantages have not been fully ex-
plored yet. There is not enough understanding of how they work, what they express, and
when they can be used. A novice knowledge engineer often has no literature guide to rely
on and is left to himself or herself.

Most, although not all, variables involved in the models that we consider in this paper
are discrete variables with finite numbers of values. In describing these models, we will be
referring to different types of causal interactions. The main reason for this is clarity of
our exposition: it is more natural for humans to talk about causal interactions than to talk
about probabilistic interactions. This choice will greatly facilitate the task of explaining
each model, defining its parameters, and offering criteria for applying them. Each model,
while probabilistic rather than causal in theory, is capable of mimicking a certain pattern of
behavior that we observe or assume between causes and effects in the real world. Interaction
between a node and its parents, the focus of this paper, can be viewed as a causal mechanism
in Simon’s sense [19]. Nevertheless, it is also possible to view these models as merely
probabilistic relations, and not to assign them any causal interpretation.

1.1 Overview of the paper

In this paper, we review the canonical models proposed so far in the literature, classify them
in a general framework, generalize some of them, introduce new models, and offer criteria
for using them in practice: what conditions or hypotheses are necessary for applying each
model, how the parameters can be elicited from human experts or estimated from databases,
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and how to build the probability distribution (the probability table in the case of discrete
variables) given the parameters and the logical or algebraic function that define each model.

The paper begins by introducing some definitions and notation and summarizing the
basic properties of Bayesian networks and their relation with causality (Sec. 2). We focus
on acyclic directed graphs, such as Bayesian networks and influence diagrams, because they
have been most widely applied in practice. This, we believe, is not without a reason — they
have the clearest common sense interpretation and can be viewed as causal models of the
underlying domains. There is a variety of probabilistic graphical models, such as Markov
networks or chain graphs, but none of them has gained the popularity achieved by Bayesian
networks.

Section 3 presents a general framework for canonical models based on three types. De-
terministic models (Sec. 3.1) derive from different logical and algebraic functions and do
not require any numerical parameters. ICI models (Sec. 3.2), which constitute most of the
canonical models analyzed in this paper, are based on the assumption of independence of
causal influence. They can be subdivided in two groups: noisy models (Sec. 3.2.1) and leaky
models (Sec. 3.2.2), the latter being a generalization of the former. The proofs of the theo-
rems that support the definition and application of leaky models are placed in Appendix A.
Simple canonical models (Sec. 3.3) are the third kind of canonical models studied in this
paper. Their main advantage is that they require fewer parameters than ICI models.

The sections that follow analyze three families of models: OR/MAX models (Sec. 4),
AND/MIN models (Sec. 5), and the XOR model (Sec. 6), and give criteria for applying them
in knowledge engineering. The duality of AND and OR models is discussed in Appendix C.

We also show, in Section 7, how canonical models can be extended to temporal domains.
Section 8 offers bibliographical notes about the models themselves (Sec. 8.1) about how
they have been applied for solving real-world problems (Sec. 8.2) and, about acquiring
the numerical probabilities (Sec. 8.3). The conclusions of this paper are summarized in
Section 9.

2. Preliminaries

2.1 Notation

We will use capital letters to represent variables and lower case letters to represent their
values. For instance, v will represent a possible value of variable V . In the same way, V
will denote a set of variables {V1, . . . , Vn}, and v a certain n-tuple (v1, . . . , vn), where vi

represents a value taken on by variable Vi. The number of variables that variable X can
take on is represented by nX .

There are binary variables of which one outcome represents the presence of something
(in diagnostic problems, for example, the presence of an anomaly or disease) or a positive
result in a test, and the other outcome represents the absence of the same entity or a
negative result in the test. These binary variables of type present/absent, positive/negative
or true/false are called Boolean variables. Their first value will be denoted by 1 or +v and
the second by 0 or ¬v. As some of the models analyzed in this paper require an ordering
of the values of the variables, we define that +v > ¬v.
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We define functions I+ and I¬, which map configurations of Boolean variables onto
subsets of indices (non-negative integers), as follows:

I+(v) = {i |Vi takes the value +vi in v} (1)
I¬(v) = {i |Vi takes the value ¬vi in v} . (2)

For example, I+(+v1,¬v2, +v3) = {1, 3} and I¬(+v1,¬v2, +v3) = {2}. For every configura-
tion v, we have I+(v) ∩ I¬(v) = ∅ and I+(v) ∪ I¬(v) = {1, . . . , n}.

Given a graph, we say that X is a parent of Y if there is a directed link X → Y in
the graph. We will use the notation Pa(Y ) for the parents of node Y and pa(X) for a
configuration of them. The ancestors of a node are its parents and the ancestors of its
parents. The definitions of child and descendant are reciprocal of the former.

2.2 Systems, models, variables, and probability distributions

Pieces of the real world that can reasonably be studied in isolation from the rest of the
world, are often called systems. Systems can be natural (e.g., the human body) or artificial
(e.g., a car engine), can be relatively simple (e.g., a pendulum) or extremely complex (e.g.,
the human nervous system). Although systems are always interlocked with the rest of the
world, one can make a strong philosophical argument that they usually consist of strongly
interconnected elements, but that their connections with the outside world are relatively
weak [76]. This property allows them to be successfully studied in isolation from the rest
of the world.

Abstractions of systems, used in science or everyday thinking, are often called models.
There is a large variety in the complexity and rigor of models: there are informal mental
models, simple black-box models, and large mathematical models of complex systems in-
volving hundreds or thousands of variables. A common property of models is that they are
simplification of reality. It could, in fact, be argued that models that are not simplification
are useless, as they do not offer any advantage over reality. A basic component of models
are variables, which are entities that can assume values. A model is, in fact, a specification
of how individual variables are interconnected and how they interact with one another.

There is a variety of formal methods for representing models, such as logical knowledge
bases, systems of simultaneous equations, or logical constraints enhanced with probability
distributions. Variables can be continuous or discrete. The latter can be binary or logical
or assume multiple possible values. How variables are interrelated and how the value of one
variable is determined by the values of other variables is typically described by mathematical
equations or functions. It is often the case that although something is known about the
qualitative and statistical properties of a system’s components, the exact functional form
of the system’s interactions is unknown. In this case, we often resort to specifying these
components by means of their joint probability distribution, which expresses the probability
of each combination of their values. The joint probability distribution allows for deriving
the impact of a subset of variables on other variables through the mechanism of probabilistic
conditioning. We can compute the probability distribution of any variable (or a group of
variables) of interest conditional on the values assumed by other variables.
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2.3 Bayesian networks and influence diagrams

Bayesian network models, details of which will be introduced in this section, represent all
interactions among a system’s variables by means of probability distributions and, therefore,
supply a convenient way to model such cases.

Formally, Bayesian networks are acyclic directed graphs in which nodes represent ran-
dom variables and arcs represent direct probabilistic dependencies among them. A Bayesian
network encodes the joint probability distribution over a set of variables {X1, X2, . . . , Xn},
where n is finite, and decomposes it into a product of conditional probability distributions
over each variable given its parents in the graph. In case of nodes with no parents, we use
their prior probability distribution. The joint probability distribution over {X1, X2, . . . , Xn}
can be obtained by taking the product of all of these prior and conditional probability dis-
tributions:

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|pa(Xi)) . (3)

Figure 2 shows a highly simplified example Bayesian network modeling causes of HIV
virus infection and AIDS.2 The variables in this model are: HIV infection (H), sexual
Intercourse (I), Blood transfusion (T ), Needle sharing (N), Mosquito bite (M), and AIDS
(A). For the sake of simplicity, we assumed that each of these variables is binary. For
example, H has two outcomes, +h and ¬h, representing “HIV infection present” and “HIV
infection absent,” respectively.

m
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m m
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?@
@R

¡
¡ª

?

HIV infection (H)

Intercourse (I)

Blood transfusion (T)Needle (N)

Mosquito bite (M)

AIDS (A)

Figure 2: An example belief network for HIV infection.

A direct arc between N and H denotes the fact that whether or not an individual shares
needles will impact the likelihood of her contracting the HIV virus. Similarly, an arc from
H to A denotes that HIV infection influences the likelihood of developing AIDS.

Lack of directed arcs is also a way of expressing knowledge, notably assertions of (con-
ditional) independence. For instance, lack of a directed arcs between N , I, T , and A
encodes the knowledge that needle sharing, sexual intercourse, and blood transfusion can
influence the chance of developing AIDS, A, only indirectly through an HIV infection, H.
These causal assertions can be translated into statements of conditional independence: A
is independent of N , I, and T given H. In mathematical notation,

P (a|h) = P (a|h, n) = P (a|h, i) = P (a|h, t) = P (a|h, n, i, t) .

2. The network is a modified version of a network presented in [20].

7



D́ıez & Druzdzel

Structural independencies, i.e., independencies that are expressed by the structure of
the network, are captured by so called Markov condition, which states that a node (here
A) is independent of its non-descendants (here N , I, and T ) given its parents (here H).

Similarly, the absence of arc I → N means that the individual’s decision to engage in a
sexual intercourse will not influence her chances of sharing needles. The absence of any links
between mosquito bite M and the remainder of the variables means that M is independent
of the other variables. In fact, M would typically be considered irrelevant to the problem
of HIV infection and we added it to the model only for the sake of presentation.

Independence properties, such as those listed above, imply that

P (n, i, t,m, h, a) = P (n) P (i) P (t) P (m) P (h|n, i, t) P (a|h) ,

i.e., that the joint probability distribution over the graph nodes can be factored into the
product of the conditional probabilities of each node given its parents in the graph. Please
note that this expression is just an instance of Equation 3.

The assignment of values to observed variables is usually called evidence. The most
important type of reasoning in a probabilistic system based on Bayesian networks is known
as belief updating or evidence propagation, which amounts to computing the probability
distribution over the variables of interest given the evidence. In the example model of
Figure 2, the variable of interest could be H and the focus of computation could be the
posterior probability distribution over H given the observed values of N , I, and T , i.e.,
P (h|n, i, t).

Bayesian networks enhanced with nodes representing decision alternatives and utility
functions are known as influence diagrams [41]. Influence diagrams allow for computing the
expected utility of each of the decision alternatives that they model explicitly and, hence,
identify the alternative that is optimal in the sense of yielding the highest expected utility.
As canonical models are specified around random variables only, we will not cover influence
diagrams in the remainder of this paper.

2.4 Causality and network structure

The mathematical formalism of BNs is based on factorization of the joint probability dis-
tribution of all variables in the model. Since this factorization is usually not unique, many
equivalent models can be used to represent the same system. Models that represent prob-
abilistic independencies explicitly in their graphical structure are strongly preferred. Such
models minimize the number of arcs in the graph, which, in turn, increases clarity and offers
computational advantages. Individual arcs can be oriented in any direction (this may have
implications on the direction of other arcs in the graph) and this direction can be reversed
by means of Bayes theorem.

Historically, graphical probabilistic models, such as Bayesian networks were developed
to represent a subjective view of a system elicited from a decision maker or a domain expert
[41]. During the elicitation process, decision makers are usually encouraged to specify
variables that are directly relevant probabilistically (or causally) to a variable and influence
that variable directly. These variables neighbor one another in the graph and a directed
arc is drawn between them. Often, the direction of this arc reflects the direction of causal
influence, as perceived by the decision maker. Sometimes, the direction of the arc reflects
simply the direction in which the elicitation of conditional probabilities is easier.
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There is little doubt to us that the notion of causality is critical in graphical probabilistic
models. There is strong evidence that humans are not indifferent to causal relations and
often give causal interpretation to conditional probabilities in the process of eliciting condi-
tional probability distributions [80]. We have found in practice that it is very helpful to use
a causal framework for modeling the interactions among the variables. There are several
reasons for this. The foremost is that a causal graph is usually the easiest for an expert
or a user to understand and conceptualize. It usually ensures satisfaction of the Markov
condition, which ties conditional probabilistic independence with the structure of the graph.
Testing for conditional independence is generally easier when the graph is causal. Henrion
[40] gives an appealing practical example when a little reflection on the causal structure
of the domain helps a domain expert to refine the model. Discovery of the fact that an
early version of a model violates conditional independence of variables (a consequence of
the Markov condition) leads the expert to realize that there is an additional intermediate
node in the causal structure of the system and subsequently to refine the model. The prob-
abilistic consequences of the causal structure, in terms of the pattern of dependences, are
so strong that an expert seeking to fulfill the Markov condition, in fact, often ends up look-
ing for the right causal model of the domain. Even those holding the strict “probabilistic
influence” view admit that experts often construct influence diagrams that correspond to
their causal models of the system [73]. Causal graphs also facilitate interactions among
multiple experts. Causal connections and physiological mechanisms that underlie an engi-
neering, physical, chemical, biological, or disease process are part of engineering, scientific,
or medical training and provide a common language among the experts participating in the
session. We have observed that experts rarely disagree about the model structure. If they
do, a brief discussion of the mechanisms involved usually leads to a consensus. Finally, when
the direction of arcs coincides with the direction of causality, it is usually (although not
always!) easier to obtain probability judgments. For example, medical textbooks typically
report conditional probabilities in the causal direction, such as the sensitivity and specificity
parameters of medical tests.

The same can be said about the user interfaces to decision support systems: having a
model that represents causal interactions aids in explaining the reasoning based on that
model. Experiments with rule-based expert systems, such as Mycin, have indicated that
diagnostic rules alone are not sufficient for generating understandable explanations and that
at some level a model incorporating the causal structure of the domain is needed [4, 88].
Explanation of reasoning in Bayesian networks typically relies on causal patterns among
the network variables [52].

One way of formalizing causality, due to Simon [75], is based on the concept of a causal
mechanism. The notion of a mechanism can be operationalized by providing a procedure for
determining whether the mechanism is present and active or not. Sometimes a mechanism
is visible and tangible. One can, for example, expose the clutch of a car and even touch
the plates by which the car’s engine is coupled with the wheels. One can even provide an
empirical demonstration of the role of this mechanism by starting the engine and depressing
the clutch pedal. Often, especially in systems studied in social sciences, a mechanism is not
as transparent. Instead, one often has other clues or well-developed and empirically tested
theories of interactions in the system that are based on elementary laws like “no action
at a distance” or “no action without communication” [77, page 52]. Mechanisms may be
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identified entirely on the basis of a theory or consist of principles derived from observations,
knowledge of legal and institutional rules restricting the system (such as tax schedules,
prices, or pollution controls), technological knowledge, physical, chemical, or social laws.
They may, alternatively, be formed on a dual basis: a theory supported by systematically
collected data for the relevant variables. Causal mechanisms and causality are fundamental
in human reasoning. A system is not understood until we understand the causal mechanisms
that it is composed of. Because causality is so important in how humans store and organize
information, it plays a fundamental role in knowledge elicitation.

3. General framework

3.1 Deterministic models

The simplest class of canonical models consists of deterministic relations among variables.
In this case, the value taken on by Y is a function of the values of the Xis: y = f(x1, . . . , xn),
and the CPT is given by

P (y|x) =
{

1 if y = f(x)
0 otherwise .

(4)

Therefore, the main advantage of the deterministic canonical models is that they do not
require any numerical parameters, because the CPT in this case can be derived from the
definition of function f .

Table 1 shows some examples of functions that have been proposed for canonical models
and Table 2 shows the CPTs for some of the canonical models based on the logical functions
defined in Table 1, assuming two parents for the OR, AND, and XOR models. Please note
that those functions have the following properties:

• Logical functions apply to Boolean variables.3 Algebraic functions apply to continuous
variables and also to discrete ordinal variables, when their values are associated with
succeeding integers. For instance, we may have the association {absent=0, mild=1,
moderate=2, severe=3}, or {decreased=−1, normal=0, increased=1}. In particular,
when the functions INV, MAX, MIN, and discrete-average are applied to discrete
ordinal variables having all the same domain, the domain of Y is the same as that of
the Xis.

• The NOT (negation), MINUS, and INV (invert) functions have only one argument,
which implies that the corresponding models admit only one parent. The other func-
tions admit two or more arguments and, consequently, the corresponding canonical
models admit two or more parents.

• For all of them, except for NOT, MINUS, and INV, f(x1) = x1.

• All the functions in Table 1 are commutative (except for the linear combination when
the ais are different), which implies that the order of the parents in the corresponding
canonical models is irrelevant.4

3. The number of Boolean functions of n arguments is 22n

; 8 of them are commutative, and 6 are both
conmutative and associative. For a deeper analysis of their properties, see [25, 45, 89].

4. Sometimes commutative functions are said to be symmetric.
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Type of
function

Type of
variables Name Definition

logical Boolean

NOT y ⇐⇒ ¬x

OR y ⇐⇒ x1 ∨ . . . ∨ xn

AND y ⇐⇒ x1 ∧ . . . ∧ xn

XOR y ⇐⇒ card(I+(x)) = 1
r-out-of-n y ⇐⇒ card(I+(x)) = r

threshold y ⇐⇒ card(I+(x)) ≥ r

algebraic ordinal

MINUS y = −x

INV y = xmax − x

MAX y = max(x1, . . . , xn)
MIN y = min(x1, . . . , xn)
ADD y = x1 + . . . + xn

average y = 1
n(x1 + . . . + xn)

discrete average y =
⌈

1
n(x1 + . . . + xn)

⌉

linear combination y = a0 + a1x1 + . . . + anxn

Table 1: Some of the functions most commonly used in canonical models.

• The functions AND, OR, MAX, MIN, and ADD are associative,5 in the sense that

∀n,∀x1, . . . , ∀xn,∀i, 1 ≤ i < n, f(x1, . . . , xn) = f(x1, . . . , xi, f(xi+1, . . . , xn)) . (5)

The XOR (exclusive OR), exactly-r, threshold, average, and discrete average are not
associative.6 The linear combination is associative only in the particular case of an
ADD function, i.e., when a0 =0 and ai =1 for 1≤ i≤n (and, of course, the trivial case
in which all the ais are zero). Leaky models are based on associative functions—see
Section 3.2.2.

• When the algebraic functions are applied to Boolean variables, by representing the
present, positive, or true value with 1 and the absent, negative, or false value with 0,
INV becomes a NOT, MAX and discrete-average become an OR, and MIN becomes an
AND. Therefore, these algebraic functions can be viewed as extensions of the logical
functions to multi-valued variables.

5. The concept of associativity is closely related to that of decomposability [36]. A function f is said to be
decomposable if there exist n−1 two-argument functions {gi} such that

f((x1, . . . , xn) = g1(x1, g2(x2, · · · gn−2(xn−2, g(xn−1, xn)) · · · )) ,

It is usual in practice that all the gs are the same. Decomposable commutative functions are said to be
multiply decomposable.

6. The XOR function is not associative because f(true, true, true) = false, while f(true, f(true, true)) =
true. Since the XOR is a particular case of the exactly-r function, with r = 1, exactly-r is not associative,
either. The threshold function is not associative because when r = 2 we have f(true, true, false) = true
while f(true, f(true, false)) = false. The average function is not associative because f(0, 2, 2) = 4/3
while f(0, f(2, 2)) = 1. The discrete average is not associative, either, because f(2, 1, 0) = 1, while
f(2, f(1, 0)) = 2.

11
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• The threshold function [85], which returns true when at least r of its arguments are
true, includes as extreme cases the functions OR (r = 1) and AND (r = n). Recent
research has shown that in some cases a noisy threshold model with 1 < r < n can be
more accurate than a noisy OR or a noisy AND [45, 85].

For an in-depth analysis of the properties of Boolean functions and the canonical models
based on them, see [44, 58, 86].

Function CPT

NOT
P (+y|x) +x ¬x

0 1

OR
P (+y|x1, x2) +x1 ¬x1

+x2 1 1
¬x2 1 0

AND
P (+y|x1, x2) +x1 ¬x1

+x2 1 0
¬x2 0 0

XOR
P (+y|x1, x2) +x1 ¬x1

+x2 0 1
¬x2 1 0

Table 2: Conditional probability table (CPT) for some of the deterministic models induced
by the logical functions in Table 1.

3.2 ICI models

Deterministic relationships are not very common in practice, as typical interactions in the
real world are uncertain. In this section, we discuss the general framework for a particular
kind of indeterministic models based on the assumption of independence of causal influence
(ICI). We analyze two kind of models: noisy and leaky, the former being a particular case
of the latter.

3.2.1 Noisy ICI models

Noisy models are built from deterministic models (see the above section) by introducing
n auxiliary variables {Z1, . . . , Zn}, as shown in Figure 3, such that Y is a deterministic
function of the Zis and the value of each Zi depends probabilistically on Xi, as captured by

12
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the CPT P (zi|xi).7 In some models, such as the noisy OR/MAX and the noisy AND/MIN,
the Zis may have a causal interpretation. However, we can just see them as auxiliary
variables that are used for deriving the equations and are not part of the model. The
conditional probability P (y|x) is obtained by marginalizing out the Zis:

P (y|x) =
∑
z

P (y|z) · P (z|x) . (6)

µ´
¶³
X1 · · · µ´

¶³
Xn

? ?

µ´
¶³
Z1 · · · µ´

¶³
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@
@

@@R
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¡

¡¡ª

µ´
¶³
Y

Noisy
parameters
P (zi|xi)





Deterministic
model

(function f)





Figure 3: Auxiliary structure for the derivation of a noisy model. The assumption of in-
dependence of causal influence is reflected in the absence of links of the form
Xi → Zj or Zi → Zj with i 6= j.

Independence of causal influence (ICI) means that there are no interactions among the
causal mechanisms (and the inhibitors) by which the Xis affect the value of Y (see also
Footnote 21). Given the graph in Figure 3, this property is equivalent to the absence of
links Xi → Zj and Zi → Zj for all i 6= j, which means that

P (z|x) =
∏

i

P (zi|xi) , (7)

This factorization, together with Equations 4 and 6, leads to

P (y|x) =
∑

z|f(z)=y

∏

i

P (zi|xi) . (8)

This equation is valid for all noisy ICI models. However, we will see later that for some
models, i.e., some particular fs, it can take other forms that are computationally more
efficient.

To summarize, a noisy model is characterized by:

• The domains of the variables, Y , Xis, and Zis. In the noisy OR, AND, and
XOR models, all nodes represent Boolean variables. The MAX and MIN models only
require that Y is an ordinal variable and that the domain of every Zi is the same as
that of Y .

7. The Zis that appear in this and the subsequent models are auxiliary variables that help in explaining
the models but do not make part of the resulting model, which is characterized only by the name of the
function, the parameters of each link, and the leaky parameters.

13
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• The function f . It is reasonable to require, following [97], that the function used in
a ICI model be commutative and associative.

• Constraints on the values of P (zi|xi), which follow from causal assumptions, as
we shall show in Sections 4 and 5. For instance, the restrictions for the noisy OR
model (Sec. 4.1.1) are

1. P (+zi|¬xi) = 0, and
2. 0 < P (+zi|+ xi) ≤ 1.

Similar constraints apply to the AND, MAX, and MIN models. The constraint for
the feeding-lines model in Section 4.3.2 is given by Equation 45. These restrictions
are usually expressed in terms of inhibitors.8

Please note that each parameter P (zi|xi) of a canonical model is associated with a
particular link Xi → Y , while every parameter P (y|x) in a CPT corresponds to a certain
configuration x made up by all the parents of Y , and cannot be associated with any particu-
lar link. This property, stemming from the ICI assumption, entails two advantages from the
point of view of knowledge engineering. The first is a significant reduction in the number
of parameters required to specify a model, from O(exp(n)) in a general model to O(n) in a
canonical model. This can amount to a substantial reduction of the elicitation effort. For
example, a binary node with 10 binary parents, will have a CPT consisting of 211 = 2, 048
numerical parameters. Adding one more node doubles this number to 212 = 4, 096 parame-
ters. In contrast, a noisy OR model would require only 10 and 11 parameters, respectively.
The second advantage is that the parameters in canonical models lend themselves to fairly
intuitive interpretations, which facilities the task of eliciting them from human experts. In
summary, canonical models not only require fewer parameters than ordinary CPTs, but
also their parameters are more intuitive and easier to estimate.

Although the notion of ICI has been described many times in the literature, usually
under the term “causal independence,” the definition is not always identical. For example,
Zhang and Poole [97] require that the domain of every Zi be the same as that of Y (a
condition that does not necessarily hold for the feeding-lines model in Section 4.3) and that
the base function f is decomposable in terms of “a commutative and associative binary
operator” (which does not hold for the XOR model in Section 6). Our concept of ICI
basically reduces to the absence of links Xi → Zj and Zi → Zj with i 6= j, i.e., to Equation 7.

3.2.2 Leaky ICI models

In practical applications, it is either not feasible or not desirable to model all variables
influencing a certain node Y . In this case, we can assume that there is a large Bayesian
network that properly represents the real-world domain defined over a set of variables, V′,
but we only include in our reduced model some of the variables, V ⊂ V′. The rest of the
variables, VI = V′\V, are not explicit in the model — the index I stands for “implicit.”
Figure 4 shows an example network with a node Y having both explicit and implicit parents.
We have V = {U1, U2, X1, X2, U5, Y, U7}. The implicit nodes, VI , are enclosed in the dashed
pentagon.

8. Inhibitors were introduced by Pearl [67] and have also been used in [36, 40, 78].
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Figure 4: Using a leaky model, a large network can be simplified by removing the nodes
in VI (implicit nodes), as stated in Theorem 1. Furthermore, Theorem 3 states
that if the CPT for Y in the large network was given by a noisy model defined on
an associative function f , its CPT in the small network will be given by a leaky
model defined on the same function.

Let us consider a node Y in V whose parents in the reduced model are X = Pa(Y )∩V.
In our example, X = {X1, X2}. The following theorem holds (the proof can be found in
Appendix A).

Theorem 1 (Marginal probability for the small network) Let B be a Bayesian net-
work whose variables are V′, let V be a subset of V′ (the variables explicit in the small
network), and Y a variable in V. We introduce the following definitions:

• VI = V′\V (implicit variables)

• X′ = Pa(Y ) (parents of Y )

• X = X′ ∩V (explicit parents of Y )

• XI = X′\X = X′ ∩VI (implicit parents of Y )

If no node in VI is a parent of any node in V —except for the fact that the nodes in
XI are parents of Y — and no node in V is a parent of any node in VI , then

P (v) =


 ∏

i|Vi∈V\{Y }
P (vi|pa(Vi))


 · P (y|x) . (9)

The theorem essentially states that if no node in V (except for Y ) has a parent in
VI , and no node in VI has a parent in V, then it is possible to build a reduced Bayesian
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network for the variables in V. Equation 9 shows that P (v) can be factored according to
the graph of the small network, in which the parents of Y are X. Please note that, even
though it refers to the small network, all the probabilities involved are the same as those
of the large network. Therefore, any marginal or conditional probability obtained from the
small network is the same as the one we would obtain from the large network.

Definition 2 (Leak parent) Under the conditions of the previous theorem, the leak par-
ent is a random variable, ZL, such that

dom(ZL) = range(f(zI)) (10)

and whose probability distribution given any configuration xI of XI is

P (zL|xI) =
∑

zI |f(zI)=zL

∏

i|Xi∈XI

P (zi|xi) . (11)

Clearly P (zL|xI) is a probability distribution because it is non-negative for every zL

and ∑
zL

P (zL|xI) =
∑
zI

∏

i|Xi∈XI

P (zi|xi) =
∏

i|Xi∈XI

∑
zi

P (zi|xi) = 1 .

The probability P (zL) is given by

P (zL) =
∑
xI

P (zL|xI)P (xI) =
∑

zI |f(zI)=zL

∑
xI


 ∏

i|Xi∈XI

P (zi|xi)


P (xI) (12)

and can be computed on a subnetwork containing only the implicit nodes, VI , and variable
ZL. The CPT of ZL is given by a noisy model—please note that Equation 11 is just Eq. 8
applied to that subnetwork. Furthermore, given that in such computation the nodes in VI

that are not descendants of any node in XI are barren nodes, it suffices that the subnetwork
contains ZL, the nodes in XI , and their ancestors. Thus, the subnetwork for the example
in Figure 4 would be that in Figure 5.
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Figure 5: Subnetwork for computing ZL from the network in Figure 4.

The next theorem, whose proof can also be found in Appendix A, offers a way for
computing P (y|x), i.e., the CPT for Y in the small network, when the CPT for Y in the
large network, P (y|x′), was given by a noisy model based on and associative function f .
The resulting P (y|x) is then said to be given by a leaky model based on function f .
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Theorem 3 (Probability table for leaky models) Under the conditions of the previ-
ous theorem, if the CPT P (y|x′) in the large network stems from a noisy model given by
parameters P (zi|xi) and an associative function f , then P (y|x) —obtained from the large
network and used as the CPT for Y in the small network— is given by

P (y|x) =
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

P (zL) . (13)

This equation can be taken as the definition of leaky models, in the same way as Equa-
tion 8 is the definition of noisy models. The parameters P (zi|xi) in a leaky model (small
network) are the same as those in the noisy model (large network), and P (zL) is a vectorial
parameter, typically referred to as the “leak probability,” which summarizes the influence
of VI on Y . It can be interpreted as the probability of a hidden parent of Y , that we have
called the “leak parent,” ZL (see Figure 6). In some models, such as the leaky OR, this
hidden parent may have a causal interpretation.

In principle P (zL) can be computed from the large network by applying Equation 12, as
was done in [70]. However, in most practical applications, the large network is never built,
and the leak probability parameter is either elicited from human experts (for instance, as
in [13]) or estimated from a database (for instance, as in [65]) — see also Section 4.2.1.
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Figure 6: Internal structure of a leaky model. Variable ZL summarizes the effect of VI , the
parents of Y not explicitly represented in the model.

3.2.3 Probabilistic ICI models

The framework for probabilistic ICI (pICI) models is similar to that in Figure 3, the main
difference being that the relation between Y and the Zis is not deterministic, as in noisy
models, but probabilistic:

P (y|z) = f ′(y, z) (14)

There are two differences between the function f used in a noisy model (see Eq. 4) and
the function f ′ used in a pICI model. First, the domain of f is dom(Z), i.e., the set of
configurations of Z, and its range is the set of values of Y, dom(Y ); in contrast, the domain
of f ′(z) is dom(Y )× dom(Z) and its range is the interval [0, 1]. Second, f ′ must satisfy the
restriction

∑
y f ′(y, z) = 1 for every configuration z, while f is unrestricted.
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Once again, the resulting model is obtained by summing out the auxiliary variables:

P (y|x) =
∑
z

P (y|z)P (z|x) =
∑
z

f ′(y, z)
∏

i

P (zi|xi) (15)

Please note the similarity and differences of this equation with (8).
If we make P (zi|xi) = δxi,zi [Kronecker’s delta] in the case of discrete variables and

P (zi|xi) = δ(xi − zi) [Dirac’s delta] in the case of continuous variables, we have P (y|x) =
f ′(y,x). As a consequence, pICI models are in principle as general as CPTs, because any
CPT can be used as the f ′ function.

However, pICI are of interest when they are based on decomposable functions (see
Footnote 5), because they can lead to faster inference and to more accurate learning from
small databases. An example of them is the pICI average model [95, 96], based on the
following function:

P (y|z) = f ′(y, z) =
1
n

card({Zi | Zi = y}) . (16)

3.3 Simple canonical models

ICI models need a probability table P (zi|xi) for each link Xi → Y , which means that the
number of parameters necessary for building the CPT is proportional to the number of
parents. This is a significant improvement with respect to the general case, which requires
an exponential number of parameters. Nevertheless, in some cases there is not enough causal
knowledge nor enough data to build an ICI model. In such cases, it may be advisable to
apply a simple canonical model (SCM), whose internal structure, illustrated in Figure 7,
contains an auxiliary variable Z such that there is a deterministic relation between the Xs
and Z, given by a certain function f , and a probabilistic relation between Z and Y , given
by a probability table, P (y|z). The number of independent parameters is (nZ −1) × nY ,
regardless of the number of parents. If both Y and z are binary variables, the model only
requires two parameters. In general SCMs require much fewer parameters than ICI models.
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Figure 7: Internal structure of simple canonical models.

The difference between ICI models and SCMs can be clearly appreciated by comparing
Figures 3 and 7: each ICI model has n intermediate variables, Zi, while a SCM has only one.
In ICI models, there a probabilistic relation between the Xs and Y , and a deterministic
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relation between the Zs and Y , while in a SCM the organization of relations is just the
opposite.

In Section 5.1.3, we will study the simple AND as an example of SCMs.

4. OR/MAX models

In Section 3.1, we defined the deterministic OR, MAX, and discrete-average models, and
showed that the deterministic MAX and the discrete-average models reduce to the deter-
ministic OR when applied to Boolean variables. In this section we analyze in detail the
ICI versions of those models: the noisy and leaky OR/MAX, and the feeding-lines model,
which is the noisy version of the discrete-average model. In all these models, the parents
X = Pa(Y ) are usually interpreted as causes capable of producing Y. In the OR/MAX
models, each Zi represents the fact that Xi has produced a certain value of Y , while in the
feeding-lines model Zi represents the effective contribution of Xi to Y (see Section 4.3.2).

4.1 Definition of the OR/MAX models

4.1.1 Noisy OR

The causal interpretation of the noisy OR is that each Xi represents a cause of Y and each
Zi indicates whether Xi has produced Y . The term “noisy” refers to the possibility that
some of the causes fail to produce the effect even when they are present. Then, ¬zi means
that Xi has not produced Y , either because Xi was absent or because a certain inhibitor Ii

has prevented Xi from producing Y . If we denote by qi the probability that the inhibitor
Ii is active, then the probability ci that Xi produces Y when it is present is

ci = P (+zi|+ xi) = 1− qi . (17)

In practice, we require that ci > 0, because if ci were zero, then Xi would not be a possible
cause of Y and should not be included among its parents. A purely probabilistic version of
this causal argument is that, according to Equation 19, ci = 0 implies that P (y|x) is the
same for +xi and ¬xi and, hence, link Xi → Y is unnecessary and should be removed.

Naturally, when Xi is absent, it cannot cause Y , i.e.,

P (+zi|¬xi) = 0 . (18)

P (zi|xi) +xi ¬xi

+zi ci 0
¬zi 1− ci 1

Table 3: Parameters of the noisy OR for link Xi → Y .

We can obtain the CPT from Equation 8 by taking into account that fOR(z) = ¬y only
for the configuration (¬z1, . . . ,¬zn). Therefore,

P (¬y|x) =
n∏

i=1

P (¬zi|xi) =
∏

i∈I+(x)

P (¬zi|+ xi) ·
∏

i∈I¬(x)

P (¬zi|¬xi)
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(please recall that I+ and I¬ were defined by Equations 1 and 2, respectively) and replacing
the factors on the right-hand side with the parameters introduced in Equations 17 and 18,
we arrive at

P (¬y|x) =
∏

i∈I+(x)

qi =
∏

i∈I+(x)

(1− ci) . (19)

In case of two causes X1 and X2 of a common effect Y , this equation leads to Table 4.
Please note that when c1 = c2 = 1, this table becomes the CPT for the deterministic OR
model (Table 2). In fact, the deterministic OR is a particular case of the noisy OR, in which
ci = 1 for all i.

P (+y|x1, x2) +x1 ¬x1

+x2 c1 + (1− c1) · c2 c2

¬x2 c1 0

Table 4: CPT for a noisy OR with two parents.

Equation 19 implies that if all the causes are absent, then Y is absent, i.e.,

P (¬y|¬x1, . . . ,¬xn) = 1 . (20)

Similarly, when Xi is present and all the other causes of Y are absent, then

P (+y|+ xi,¬xj (∀j, j 6=i)) = ci , (21)

which is coherent with the definition of ci as the probability that Xi causes Y (cf. Equa-
tion 17).

4.1.2 Leaky OR

As discussed in Section 3.2.2, it is generally infeasible in practice to explicitly include all
possible causes of an effect, and for this reason, we need a leaky version of the OR model.
Since the range of the OR function is {true, false}, variable ZL is also a Boolean variable
(see Equation 10), and the leak probability P (zL) is expressed in terms of one parameter
cL, {

P (+zL) = cL

P (¬zL) = 1− cL .

The CPT for Y in the leaky model can be obtained from Equation 13 by taking into
account that fOR(z, zL) = ¬y only for the configuration (¬z1, . . . ,¬zn) and the value ¬zL.
Therefore,

P (¬y|x) = P (¬zL) ·
n∏

i=1

P (¬zi|xi) = (1− cL) ·
∏

i∈I+(x)

(1− ci) . (22)

Table 5 shows the form of the CPT for n = 2. Please note that when cL = 0, this table
is equivalent to the CPT for the noisy OR model (Table 4).
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P (+y|x1, x2) +x1 ¬x1

+x2 1− (1− c1) · (1− c2) · (1− cL) c2 + (1− c2) · cL

¬x2 c1 + (1− c1) · cL cL

Table 5: CPT for a leaky OR with two parents.

When all explicit causes are absent, the probability of Y being present is the leak
probability:

P (+y|¬x1, . . . ,¬xn) = cL , (23)

which means that ZL can be interpreted as the variable that indicates whether the implicit
causes produced Y or not.

The noisy OR is a particular case of the leaky OR in which cL = 0. In a proper leaky
OR, cL > 0. We also require that cL < 1, because if cL were 1 then P (+y|x) = 1 for all x,
i.e., Y would always be present, regardless of the values assumed by the Xis. In that case,
links Xi → Y would be unnecessary and should be removed.

4.1.3 Recursive noisy OR

We have seen that in the noisy OR all the values of the CPT are obtained from the ci

parameters under the assumption of independence of causal influence (ICI). The recursive
noisy OR (RNOR) [56] was proposed to relax the ICI assumption by allowing that the
human expert gives a value not only for the cis, but also for some of the probabilities in
which several causes are present. When the value for a certain two-cause parameter ci,j has
not been given by the expert, it is computed from ci and cj as if it were a standard noisy
OR:9

ci,j = 1− (1− ci)(1− cj) = ci + (1− ci) · cj . (24)

The value of ci,j obtained from this expression represents, by definition, the lack of synergy
between Xi and Xj . When the value provided by the human expert is higher than the one
obtained from this equation, we say that there is synergy between them. When the expert-
estimated value is smaller, we say that Xi and Xj interfere. In any case, the axioms of the
RNOR require that the expert-estimated value be higher than max(ci, cj).

Similarly, if the value of the three-cause parameter ci,j,k is not explicitly given by the
expert, it is computed as follows:

ci,j,k = 1− (1− ci,j)(1− cj,k)(1− ci,k)
(1− ci)(1− cj)(1− cj)

. (25)

Please note that if all the ci,js were computed from the cis, then ci,j,k would have the same
value as in a noisy OR (cf. Eq. 19). However, if some of the ci,js were given by the expert,
the value of ci,j,k resulting from Equation 25 will in general be different from the its noisy
OR counterpart, i.e., the one based on Equation 19.

This model is called recursive because the n-cause parameters, if not given by the
expert, are computed from the (n−1)-cause and (n−2)-cause parameters by applying a

9. In this section, the subindices of c indicate the causes that are present. For instance, when n = 4 we
have c1,3 = P (+y| + x1,¬x2, +x3,¬x4). This notation is coherent with the interpretation of the cis as
the one-cause parameters—see Equation 21.
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generalization of Equation 25, namely Equation 4 in [56]. The RNOR includes the noisy
OR as a particular case because if only the one-cause parameters —the cis— are given by
the expert then the resulting CPT is the same as for the noisy OR.

A drawback of this model is that it may be asymmetric when n > 3. In fact, even
though Equations 24 and 25 are symmetric, when c involves four or more causes, the order
of the subindices becomes relevant: the value of ci,j,k,l is based on ci,j , cj,k, ck,l, and cl,i,
while the value of ci,k,j,l is based on ci,k, ck,j , cj,l, and cl,i, which may be different if some
of the two-cause parameters were given by the expert. No causal argument can justify this
difference and the authors of this model do not give any criterion for determining the right
order of the parents.

Another limitation of this model is that, as mentioned above, the axioms of the RNOR
prohibit that a c parameter involving m causes be smaller than any parameter involving a
subset of those causes. A violation of this requirement of monotonicity might make higher-
order parameters be outside the [0, 1] interval. The next model provides a remedy to this
limitation.

4.1.4 Inhibited recursive noisy OR

A possibility of modelling inhibition consists in applying the inhibited RNOR [50], a non-ICI
model that computes, on the one hand, the probability that Y is caused and, on the other,
the probability that it is inhibited. The knowledge engineer will declare that some subsets
of parents of Y are causes of Y , while other subsets are inhibitors of Y , each with a certain
probability. For example, cj,k is the probability that Xj and Xk together cause Y , while
ij,k,l is the probability that Xj , Xk, and Xl together inhibit Y .

For a configuration x, Pc(y|x) gives the probability that Y was caused, and Pi(y|x) gives
the probability that Y has been inhibited. Each of these CPTs is derived as a recursive
noisy OR, the former based on the c parameters and the latter on the is. There is also a
leak probability, cL, representing the probability that other causes not explicit in the model
produce Y. The effect is present when it has been caused and not inhibited:

P (+y|x) = P (Y caused by x) · P (Y not inhibited by x)
= [Pc(+y|x) + (1− Pc(+y|x)) · cL] · [1− Pi(+y|x)]

The RNOR is a particular case of the inhibited recursive noisy OR having no inhibitors
and no leak probability. The leaky OR is a particular case of the inhibited in which only
the one-cause parameters are explicitly given, i.e., having no inhibitors and no interactions
between causes.

Please note that this model contains two types of inhibitors. On the one hand, ci < 1
means that there is a certain (implicit) inhibitor for cause Xi, and ci,j < 1 implies that there
is an inhibitor for the combination of Xi and Xj . Besides this implicit local inhibitors, there
are other inhibitors explicitly given by the i parameters, which have a global scope, i.e.,
they inhibit Y independently of how it has been produced.

4.1.5 Noisy MAX

The noisy MAX model was developed with the intention to extend the noisy OR model to
multi-valued variables. In the noisy MAX, each Zi represents the value of Y produced by

22



Canonical Probabilistic Models for Knowledge Engineering

Xi. The resulting value produced by the individual Xis is y = fMAX(z). Therefore, Y and
the Zis must share the same domain. Each Zi represents the fact that Xi has raised the
value of Y to a certain value, and the actual value of Y is the maximum of the Zis.

The parameters for a link Xi → Y are

cxi
zi

= P (zi|xi) (26)

or, equivalently,
cxi
y = P (Zi = y|xi) (27)

Each cxi
y can be understood as the probability that Xi, when taking the value xi, raises

the value of Y to y.
Please note that this noisy MAX only requires that Y is an ordinal variable. It does

not impose any condition on the domains of the Xis or on the values of the cxi
y s. Therefore,

this noisy MAX is more general than the causal MAX described in the next section, and
in turn the latter is more general than the graded noisy MAX proposed in [10, 40].

CPT for the noisy MAX In order to obtain the CPT for the noisy MAX, we first
compute P (Y ≤ y|x) for all values y and all configurations x by applying Equation 8 and
taking into account that fMAX(z) = max(z1, . . . , zn), which implies that fMAX(z) ≤ y if
and only if zi ≤ y for all i. Therefore,

P (Y ≤ y|x) =
∑

z|fMAX(z)≤y

∏

i

cxi
zi

=
∑

z1≤y

· · ·
∑

zn≤y

∏

i

cxi
zi

=
∏

i


∑

zi≤y

cxi
zi


 . (28)

If we define accumulative parameters,

Cxi
y =

∑

zi≤y

cxi
zi

, (29)

the previous equation becomes

P (Y ≤ y|x) =
∏

i

Cxi
y . (30)

Each value of the CPT can be obtained as follows:

P (y|x) =
{

P (Y ≤ y|x)− P (Y ≤ y − 1|x) for y 6= ymin

P (Y ≤ y|x) for y = ymin
. (31)

4.1.6 Causal noisy MAX

The causal noisy MAX is a particular case of the noisy MAX in which Y represents an
anomaly and the Xis are the anomalies than may cause Y . Variable Y is a graded variable
[10], i.e., an ordinal variable whose neutral state, denoted by ¬y, is the minimum of Y and
represents the absence of anomaly, and higher states of Y represent more severe degrees of
anomaly. In contrast, the Xis need not be ordinal: it suffices that each Xi has a neutral
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state, ¬xi, which may be different from the minimum of Xi, as shown in the example in the
next section.10

In this ICI model, each Zi represents the degree of Y caused by Xi. Because of the
definition of neutral state,

c¬xi¬y = P (Zi = ¬y|¬xi) = 1 . (32)

It follows from Equation 8 that anomaly Y is absent when all its parents are in their
neutral states, i.e.,

P (¬y|¬x1, . . . ,¬xn) = 1 . (33)

It also follows from Equation 8 that

P (y|xi,¬xj (∀j, j 6=i)) = P (Zi = y|xi) = cxi
y , (34)

which means that when Xi takes the value xi and the other causes of Y are in their neutral
states, the probability that Y takes the value y is cxi

y . Therefore, cxi
y represents the capability

of Xi to raise the state of Y to a certain value independently of the states of the other causes
of Y (which may happen to raise the value of Y to a higher value).

When a Xis is ordinal, especially when it is graded, typically higher values of Xi tend
to cause higher values of Y , i.e.,

xi < x′i =⇒ ∀y, P (Zi ≥ y|xi) ≤ P (Zi ≥ y|x′i) . (35)

(In the example in the next section X2 is a graded variable and satisfies this condition.)
This is equivalent to

xi < x′i =⇒ ∀y,

ymax∑
zi=y

cxi
zi
≤

ymax∑
zi=y

c
x′i
zi . (36)

In this case, the link Xi → Y represents a positive influence, as defined in [51, 54, 90].
The causal noisy MAX defined in this section is more general than the noisy MAX

introduced in [10, 39], which may be called graded noisy MAX because it required that all
the variables were graded. The noisy OR is a particular case of the graded noisy MAX,
and consequently, a particular case of the causal noisy MAX. Therefore, the similarity of
Equations 20 and 33 and Equations 21 and 34 is not surprising.

4.1.7 Leaky MAX and causal leaky MAX

Following the framework exposed in Section 3.2.2, it is possible to build a leaky MAX in
which the interpretation of the auxiliary variable ZL is that some causes, not explicit in
the model, have raised the value of Y to y, with probability P (ZL = y). In practice,
dom(ZL) = dom(Y ), which implies that the leaky MAX requires nY leak parameters,
cL
y = P (ZL = y), that can be computed from Equation 12 or estimated from databases or

from human experts. The number of independent parameters is nY − 1, because their sum
must be 1.

10. The term neutral state is synonimous the distinguished state proposed by Heckerman and Breese [36],
who used the expression amechanistic property to refer to the fact that ¬xi does not take Y out of its
normality state ¬y (see Equations 32 and 33). It is also synonymous with the term normality state used
in [51, 54]
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In the causal version of the leaky MAX, Y and its parents satisfy the same conditions
as in the causal noisy MAX, and each parameter cL

y represents the probability that Y = y
when the causes explicit in the model are in their neutral states:

cL
y = P (y|¬x1, . . . ,¬xn) , (37)

(please note the similarity with Equation 23), in accordance with the assertion that ZL = y
represents the fact that the causes of Y implicit in the model have raised its value to y.

Example: causal leaky MAX. A certain disease Y may be caused by the excess or
deficiency of substance X1 in the patient’s blood. The same disease can also be due to a
certain anomaly X2. We may represent this problem by choosing the following domains for
these variables:

dom(Y ) = {absent ,mild ,moderate, severe}
dom(X1) = {decreased ,normal , increased}
dom(X2) = {absent , present}

Their neutral values are ¬y =absent, ¬x1 =normal, and ¬x2 =absent, respectively. X1 is
not a graded variable because its minimum, “decreased,” does not represent the absence of
anomaly. Figure 8.(a) shows the parameters for this model in Elvira.11

Figure 8.(b) represents the CPT computed from these parameters. We can see that
when X1 and X2 are in their neutral states (5th column), the probability of Y is the leak
probability shown in Figure 8.(a), which agrees with Equation 37.

The noisy MAX is a special case of the leaky MAX in which cL
ymin

= 1 and the other cL
y s

are zero, which implies that Y > ymin only when some of the Xi (the explicit causes, we
might say) has raised its value. Clearly, the causal noisy MAX is a particular case of the
causal leaky MAX under the same condition: cL¬y = 1 implies that Y takes its minimum
value, ¬y, when its parent are all in their neutral states.

The leaky OR is a special case of the causal leaky MAX in which Y and their parents
are all Boolean variables, cL

+y = cL and cL¬y = 1− cL.

CPT for the causal leaky MAX Similarly to the case of the noisy MAX, we will
first compute P (Y ≤ y|x) for all the values y and all the configurations x by applying
Equation 13, as follows:

P (Y ≤ y|x) =
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|fMAX(z,zL)≤y

P (zL) =


 ∑

zL≤y

cL
zL


 ·

∏

i


∑

zi≤y

cxi
zi


 .

(38)
If we define an accumulative vectorial parameter,

CL
y =

∑

zL≤y

cL
zL

, (39)

11. Elvira [24] is a public software tool for Bayesian networks and influence diagrams developed by several
Spanish universities—see http://www.ia.uned.es/~elvira. Similar tables might be obtained with Ge-
NIe, another software tool developed by the second author’s lab at the University of Pittsburgh—see
http://genie.sis.pitt.edu.
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a)

b)

Figure 8: A causal MAX in Elvira [24]. (a) Canonical parameters. (b) Conditional proba-
bility table.

the previous equation becomes

P (Y ≤ y|x) = CL
y ·

∏

i

Cxi
y . (40)

Each probability P (y|x) can be obtained from Equation 31, as shown in the following
example.

Example. According with Equations 29 and 40, the C parameters for the causal leaky
MAX shown in Figure 8.(a) are as follows:
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Cx1
y

X1

incr norm decr

Y =sev 1.00 1.00 1.00
Y =mod 0.59 1.00 0.98
Y =mild 0.27 1.00 0.90
Y =abs 0.09 1.00 0.66

Cx2
y

X2

pres abs

Y =sev 1.00 1.00
Y =mod 0.91 1.00
Y =mild 0.64 1.00
Y =abs 0.49 1.00

CL
y

Y =sev 1.000
Y =mod 0.999
Y =mild 0.996
Y =abs 0.984

All the probabilities in Figure 8.(b) can be computed by applying Equations 31 and 40. For
instance, the probability at the top right corner is

P (Y ≤ sev |X1 = incr, X2 = pres) = 1× 1× 1 = 1
P (Y ≤ mod|X1 = incr, X2 = pres) = 0.59× 0.91× 0.999 = 0.53636
P (Y = sev |X1 = incr, X2 = pres) = P (Y ≤ sev |X1 = incr, X2 = pres)

− P (Y ≤ mod|X1 = incr, X2 = pres)
= 1− 0.53636 = 0.46364 .

4.2 Knowledge engineering for the OR/MAX models

4.2.1 Net parameters vs. compound parameters

In the noisy OR, ci is the probability of +y when Xi is present and the other Xjs are absent
(cf. Equation 21). However, in the leaky OR, the probability of Y when Xi is present and
the other explicit causes are absent is not ci, but rather pi, where

pi = P (+y|+ xi,¬xj (∀j, j 6=i)) = ci + cL − ci · cL . (41)

We call ci a net parameter because it measures the net effect of Xi, and we call pi a
compound parameter because it reflects the fact that Y may be due to either Xi, with
probability ci, or to the implicit causes, with probability cL.

Since cL > 0 in the proper leaky OR, we have pi > ci. We also have

1− ci =
1− pi

1− cL
. (42)

Henrion’s [40] definition of the leaky OR is based on the compound parameters, pi. In
fact, Henrion’s equation for the probability table derived from the parameters of the noisy
OR gate was

P (+y|x) = 1− (1− cL) ·
∏

i∈I+(x)

1− pi

1− cL
, (43)

which is equivalent to Equation 22.
Which parameters are more appropriate from the point of view of knowledge engineer-

ing? It depends on the source of knowledge. When the probabilities are obtained from a
database, cL can be estimated as the proportion of cases in which Y is present among
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those in which all the causes of Y stored in the database are absent (cf. Equation 23). If
cL > 0, then there must be other causes of Y , not explicitly recorded in the database.
The proportion of cases in which Y is present among those in which Xi is present and the
explicit causes Xj take on the value absent is an estimate of the compound parameter pi (cf.
Equation 41). In this situation, it is impossible to estimate the net parameter ci directly
from the database, because, as mentioned above, the implicit causes are not recorded in the
database and they may always be present.

In contrast, when the probabilities are estimated by human experts, the question
that the knowledge engineer should ask in order to obtain the net parameter ci is: “What
is the probability that Xi produces Y if all other possible causes of Y are absent?,” while
the question for eliciting the compound parameter pi would be: “What is the probability
that Y is present when Xi is present and none of the other causes that we are considering
explicitly in our model are present?” The answer to the first question can be based on an
analysis of the causal mechanism Xi → Y and its possible inhibitors (cf. Section 4.1.1),
while the second question calls on the “statistical” data stored in the expert’s memory.
Recent work on the elicitation of probabilities for a medical expert system has shown that
it seems easier for human experts to give the net parameters [64]. A controlled study of
this problem has confirmed this observation [93]. This is consistent with our conjecture
that human estimation of probabilities relies on the knowledge of causal mechanisms and
not only on observed frequencies.

In summary, the frequencies that we observe in a database correspond to Henrion’s com-
pound parameters, pi. In this case, we recommend to convert them into the corresponding
cis (cf. Equation 42), because Equation 22 is slightly more efficient than Equation 43. In
contrast, when the probabilities are estimated by a human expert, we recommend focus-
ing directly on the net parameters, ci, because the corresponding questions will be simpler
and more intuitive. Fortunately, if cL is small — as it typically shall be, because an accu-
rate model must explicitly include all the frequent causes of each anomaly — the difference
between each ci and its corresponding pi will be smaller than the error of the subjective esti-
mate, and the knowledge engineer does not need to worry too much about which parameters
she is eliciting from the expert.

4.2.2 Criteria for applying the OR model

In order to apply the OR model in practice, the knowledge engineer has to verify the
following criteria:

1. Are the variables involved in the family all Boolean?

For example, if one of the parent variables is Sex, the OR model cannot be applied,
because it is not possible to identify one of its values (male or female) with the cause
of an anomaly and the other with its absence. If Sex appears among the parents of
a certain family, generally it behaves as a risk factor or as a precondition for another
variable, and in this case the right choice may be the AND model (see Section 5).

2. Is there a causal mechanism for each parent Xi, such that Xi is able to cause Y in
the absence of the other anomalies?
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Please remember that in the OR model variable Zi (Figure 3) represents the fact that
the effect Y has been produced by Xi. When the effect cannot be caused by individual
mechanisms, but it is necessary that some of the causes co-occur to produce the effect,
the OR model cannot be applied.

3. What is the nature of the causal mechanisms involved?

If some of these causal mechanisms are not deterministic, the noisy OR must be used
instead of the deterministic OR. If there are other causes, not explicit in the model
but capable of producing Y , the leaky OR must be used instead of the noisy OR.

4. Are the causal mechanisms independent?

This is, in general, the most difficult condition to establish, since in many cases our
knowledge of the domain is not precise enough to ascertain that the causal mechanisms
and their inhibitors do not interact with one another. In practice, unless there are
known interactions, we assume that this condition holds and the noisy/leaky OR can
be applied. If this assumption does not hold, then we should use a non-ICI model,
such as the above-mentioned RNOR or inhibited RNOR models.

An interesting attempt to extend canonical models to cases in which interactions
happen was made by Lemmer and Gossink [56]. They extend the plain noisy OR
model by allowing the expert to specify interaction effect between chosen groups of
causes and derive the CPTs from these specifications.

5. In case of a leaky OR, are the implicit causes of Y and their ancestor causes (called
VI in Section 3.2.2) independent of all the explicit variables in the model?

Typically, we assume that this condition holds unless there is evidence against it.

If all the above conditions hold, we can proceed with obtaining the numerical parameters,
either from a database or from an expert. In the latter case, if a cause Xi almost always
produces the effect, we recommend to ask the expert for an estimate of P (¬zi| + xi) =
1− ci, i.e., the probability that an inhibitor prevents X from producing Y , because in our
experience it is easier for a human expert to estimate whether qi is 0.01 or 0.001 (the latter
is 10 times bigger than the former) than to assess whether ci is 0.99 or 0.999 (the difference
being less than 1%). Otherwise, we recommend to estimate ci = P (+zi| + xi) directly. In
case of a leaky noisy OR, the knowledge engineer must decide if the knowledge elicitation
will be based on the net parameters or on the compound parameters (see Section 4.2.1),
although when the leak probability is small, the difference is almost irrelevant.

4.2.3 Criteria for applying the noisy MAX

In general, the criteria for using the MAX model are the same as those for the OR model.
We should note that, although in the development of practical models, application of the

deterministic OR is not uncommon, we have never encountered examples in which the de-
terministic MAX would be appropriate, except for when the parents of Y represent different
subtypes of Y . For instance, in a Bayesian network that we developed for echocardiography
[13], the node Mitral-regurgitation took on values {absent, mild, moderate, severe} and had
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two parents, Acute-mitral-regurgitation and Chronic-mitral-regurgitation, whose interaction
was modeled by a deterministic MAX.

The noisy/leaky causal MAX is the candidate model when there are several causes Xi

that can produce an effect Y with various degrees of severity. The conditions that must be
satisfied are:

1. Is Y a graded variable, i.e., an ordinal variable whose minimum corresponds to the
absence of an anomaly?

One case in which this condition does not hold is when the values of Y are, for instance,
{decreased, normal, increased}, because the normal value is not the minimum. Such
variable could be, however, one of the parents of a noisy MAX gate, as shown in the
example in Section 4.1.7.

2. Does each link Xi → Y corresponds to a distinct causal mechanism?

3. Are the mechanisms causally independent of each other, or are there interactions
among them?

If this condition did not hold, i.e., if there were interactions among the causal mecha-
nisms, we should use a non-ICI model similar to the RNOR or the inhibitory RNOR
capable of dealing with non-binary variables. Unfortunately, to our knowledge no
such model has been developed up to date. Fortunately, in our experience in building
probabilistic graphical models we have never needed them.

When the above criteria are satisfied, we must estimate the parameters of the noisy/leaky
MAX from a database or elicit them from an expert. As in the case of the leaky OR, there
are two ways of eliciting the parameters of each link in a MAX model. The parameters
cxi
y that we have used in the description of the causal noisy MAX are net (in the sense

introduced in Section 4.2.1) and correspond to the question: “What is the probability that
Y = y when Xi = xi and all the other causes of Y are absent?”

In contrast, we could ask the expert: “What is the probability that Y = y when Xi = xi

and the other causes of Y that we are considering in our model are absent?” The answer
would correspond to the pxi

y parameters, defined as follows,

pxi
zi

= P (y|xi,¬xj (∀j, j 6=i)) , (44)

which are the equivalent of the compound parameters that Henrion used in his description of
the leaky OR. The relation between the pxi

zi
s and the cxi

zi
s is given in Appendix B. However,

as mentioned above, in our experience, the first question seems more intuitive and was easier
to answer for the experts that we have worked with. It also seems to yield parameters of
higher accuracy [93].

4.3 Feeding-lines model

4.3.1 Definition of the model

The feeding-lines model proposed by Srinivas [78] follows the pattern of noisy models de-
scribed in Section 3.2.1. Its causal interpretation corresponds to the case of several lines
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feeding a certain device, for instance, several wires transmitting signals to an electronic
component. It is a noisy model because it admits the possibility that some lines fail. Let
Xi represent the input of line i and Zi its output. If there is no failure, the output will be
the same as the input, and for this reason each Zi must take values in the same domain
as its corresponding Xi. If there is a failure, the output will be zi with probability qzi .
Therefore, the probability of a failure is qtotal =

∑
zi

qzi , and the conditional probability of
Zi is12

P (zi|xi) =
{

1−∑
z′i 6=xi

qz′i if zi = xi

qzi if zi 6= xi
, (45)

which simply reflects the fact that the value of Zi will be the same as that of Xi unless a
failure in the line leads Zi to a different state.

The behavior of the device, whose inputs are the Zis and whose output is Y , is modeled
by a certain function, y = f(z). Implicit in this model is the assumption of a deterministic
device.13 In principle, f can be any discrete function. As an example, Srinivas [78] proposed
the function

y = f(x1, . . . , xn) = ymin +

⌈
(ymax − ymin)

1
n

∑

i

xi − xi min

xi max − xi min

⌉
. (46)

When xi = xi min, the value of the ith term in the sum on i is 0. In contrast, when
xi = xi max, the i-th term contributes 1 to the sum. Therefore, 1

n

∑
i

xi−xi min
xi max−xi min

is the
average of the normalized values of the Xis, and this average is then mapped from [0, 1]
onto the set {ymin, . . . , ymax}. When ymax = xi max and ymin = xi min for all i, this function
simplifies into the discrete average function shown in Table 1.

It is easy to check that

y = f(x) = ymin ⇐⇒ ∀i, xi = xi min .

When Y and the Xis are all Boolean, then Y = 0 if and only if all the Zis take the value
0, and Y = 1 otherwise, which means that the relation between Y and the Zis is given by
a deterministic OR, since the discrete average function simplifies into the OR function in
case of Boolean variables (cf. Section 3.1). If q+xi = 0, Srinivas’ model becomes a noisy OR
in which ci = 1− q¬xi .

The CPT for this model must be obtained directly from Equation 8 as, in general, there
is no way of computing it more efficiently.

4.3.2 Comparison with the noisy OR/MAX

Both the noisy MAX and the feeding-lines model are noisy ICI models (cf. Section 3.2)
that generalize the noisy OR to non-binary variables. Nevertheless, their semantics are
quite different. In the noisy MAX model, Zi represents the probability that a cause Xi has

12. Actually, Srinivas [78] used a slightly different notation. Each parameter qzi in our description corre-
sponds to a certain P inh

i (Ii(xi)) in his paper (Zi has the same domain as Xi).
13. Srinivas explained that this restriction can be relaxed by adding an AND model with two inputs, one

being the output of the ideal device (without failure) and the other representing the possibility of a
failure of the device; the output of this AND would be the output of the real device. An easier solution
would be to use the simple AND described in Section 5.1.3.
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changed the value of Y from its minimum to a certain value y. For this reason, the domain
of Zi is the same as that of Y . In contrast, each Zi in the feeding-lines model represents
the output of line i. If there is no failure, the output value, zi, is the same as the output
value, xi, and for this reason Zi has the same domain as Xi, which may be different from
that of Y .

Another difference is that the feeding-lines model can use any function f : X1 ×X2 ×
. . .×Xn 7→ Y (the function in Equation 46 is only one of the many possibilities), while in
the noisy MAX the function is always the maximum.

Finally, in the feeding-lines model there are mXi parameters qxi for each link Xi → Y ,
while the noisy MAX has mY ·mXi parameters cxi

y for each link, (mY − 1) ·mXi of which
are independent. This is, however, a minor difference, since the feeding-lines model could
be modified by imposing different restrictions on the CPTs P (zi|xi).

The feeding-lines model would be particularly suitable for diagnosis and reliability analy-
sis of networks, electric circuits, and other systems consisting of different components con-
nected by noisy lines. However, to our knowledge, it has never been used for building
real-world applications.

5. AND/MIN models

In Section 3.1, we defined the deterministic AND and MIN, and mentioned that the de-
terministic MIN reduces to the deterministic AND when applied to Boolean variables. In
this section, we analyze the noisy and leaky versions of the noisy AND, the simple AND,
and the noisy MIN. We also discuss the application of those models to the construction of
real-world applications.

5.1 Definition of the AND/MIN models

5.1.1 Noisy AND

The parents of a noisy AND can be interpreted as the conditions necessary for Y to be true.
In the most general version of this model, each condition can be inhibited or substituted.
If qi is the probability that the ith inhibitor is active when condition Xi is fulfilled, then
ci = 1 − qi (see Table 6) If there is no inhibitor for Xi, then ci = 1. Similarly, si is the
probability that the ith substitute replaces Xi when this condition is not met. If there is
no substitute for Xi, then si = 0. In general, ci

∼= 1 and si
∼= 0.

P (zi|xi) +xi ¬xi

+zi ci si

¬zi 1− ci 1− si

Table 6: Parameters of the noisy AND for the link Xi → Y .

In analogy with the derivation of the CPT for the noisy OR (Eq. 19), the CPT for the
noisy AND can be obtained from Equation 8 by taking into account that fAND(z) = +y
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only for the configuration (+z1, . . . , +zn). Therefore,

P (+y|x) =
∏

i

P (+zi|x) =
∏

i∈I+(x)

ci

∏

j∈I¬(x)

sj , (47)

i.e., each Xi present (Xi = +xi) contributes a factor ci to this product, and each Xj absent
(Xj = ¬xj) contributes a factor sj . If a certain condition Xk is absent and has no substitute
(sk = 0), then P (+y|x) = 0, regardless of the values taken on by the other variables.

In particular, if there are no inhibitors, then ci = 1 for all i and

P (+y|x) =
∏

j∈I¬(x)

sj ,

i.e., the probability of Y is computed by taking into account the possibility of finding
substitutes for the absent conditions.

Similarly, if there are no substitutes, then si = 0 for all i and

P (+y|x) =

{ ∏
i

ci if ∀i, Xi = +xi

0 otherwise
,

which means that Y only occurs when all the conditions are fulfilled and none have been
inhibited. This particular case was presented as the definition of the noisy AND in [29, 57].

Overspecification of the noisy AND. Given a noisy AND, in general we can obtain
an equivalent model by replacing c1 with k · c1, s1 with k · s1, c2 with c2/k and s2 with
s2/k, provided that the new parameters are all between 0 and 1. This means that the
noisy AND is overspecified in the sense that a CPT can be parametrized in several different
ways, i.e., there is in general a whole family of noisy ANDs representing the same CPT. In
Section 5.2.1 we will discuss the implications of this property for knowledge engineering.

5.1.2 Leaky AND

As mentioned above, the leaky AND is obtained from the standard noisy AND by adding
an implicit inhibitor that — with probability qL — may prevent the occurrence of Y even
when all the conditions explicit in the model are fulfilled. Therefore, the CPT for the leaky
AND is

P (+y|x) = (1− qL) ·

 ∏

i∈I+(x)

ci


 ·


 ∏

j∈I¬(x)

sj


 , (48)

which is a generalization of Equation 47. (The proof of this equation is similar to that of
Eq. 22.)

The noisy AND is a particular case of the leaky AND with qL = 0. The semi-
deterministic AND model [5], which admits the possibility that Y is false even when all its
conditions are fulfilled, with probability q, is a particular case of the leaky AND, in which
ci = 1 and si = 0 for all i, and qL = q.

Please note that, as a consequence of the overspecification of the noisy AND mentioned
in the previous section, the leak parameter can be absorbed into the parameters of any link,
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for instance by replacing c1 and s1 with (1 − qL)· c1 and (1 − qL) · s1. Therefore, a leaky
AND is always equivalent to a noisy AND. However, from the point of view of knowledge
engineering, in some cases it may be convenient to use a leaky AND instead of an equivalent
noisy AND, as discussed in Section 5.2.1.

In the leaky AND, qL represents the effect of a global inhibitor that can make Y to
be false even when all the conditions have been fulfilled. However, the leaky AND does
not admit a global substitute that allows Y to be true when some or all the conditions
fail: according to Equation 48, it suffices that one condition fails (j ∈ I¬(x)) and is not
substituted (sj = 0) to make Y fail. This property is a consequence of the internal structure
of the leaky AND, shown in Figure 6: if f is the AND function and one of the Zis is false,
then Y is false, independently of the value of ZL and the other Zjs. For this reason, if
we need to represent an AND-like model in which Y can be true even when some of its
conditions fail, we need either a leaky model based on a different f or a non-ICI model,
such as the one shown in the next section.

5.1.3 Simple AND

It may happen in practice that, for a certain family, the expert only knows that Y may be
false even when all the conditions are fulfilled, and/or Y can be true when some conditions
fail, but he/she is not able to assess the parameters ci and si associated with the inhibitor
and substitute of each single condition Xi. In this case, it may be useful to apply a different
probabilistic extension of the deterministic AND, namely the simple AND (see Section 3.3,
especially Figure 7), which only requires two parameters: c, representing the probability
that Y occurs when all the conditions Xi are satisfied, and s, the probability that Y occurs
when some of its conditions fail, as shown in Table 7.

P (y|z) +z ¬z

+y c s
¬y 1− c 1− s

Table 7: Parameters for the simple AND. When c ∼= 1 and s ∼= 0 this model approaches the
deterministic AND.

The CPT for this model is

P (+y|x) =
{

c for x = (+x1, . . . , +xn)
s otherwise .

Clearly, the deterministic AND is a particular case of the simple AND in which c = 1 and
s = 0. The semi-deterministic AND model [5], introduced in the previous section as a
particular case of the leaky AND, is also a particular case of the simple AND, in which
c = 1− q and s = 0.

However, the leaky AND and the simple AND are very different: the former is an ICI
model, whose internal structure is shown in Figure 3, while the latter is an SCM (see Sec. 3.3
and Figure 7). Secondly, the noisy AND with n parents requires 2n parameters and the
leaky AND 2n + 1, while the simple AND requires only two, regardless of the number of
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parents. Finally, the main difference between both models is that the simple AND admits
a global substitute, represented by parameter s, which allows Y to be true even if all the
conditions {Xi} are false, while the noisy AND excludes that possibility.14

5.1.4 MIN models

The noisy MIN only differs from the generalized noisy MAX described in Section 4.1.5 in
that, obviously, the underlying function f is a min instead of a max. As in the noisy MAX
model, the only restriction is that Y is an ordinal variable. Then Zi = y represents the fact
that Xi has led Y to take on the value y and the parameter cxi

y = P (Zi = y|xi) represents its
probability. The resulting value of Y will be the minimum of the individual values produced
by each Xi.

If we want to make sure that higher values of Xi lead to higher values of Y for some
particular link Xi → Y , the parameters of that link must satisfy the condition given by
Equations 35 and 36, as in the case of the noisy MAX.

Finally, we might have a leaky MIN, analogous to the leaky MAX.
The CPT for the noisy MIN the leaky MIN can be obtained from Equations 28 and 31

by replacing “≤” with “≥”, “−1” with “+1”, and “ymin” with “ymax”.

5.2 Knowledge engineering for the AND/MIN models

5.2.1 Criteria for applying the noisy AND

When describing the OR model, we spoke about “causes that may produce Y ,” while when
describing the AND models, we spoke of “conditions for Y .” This, however, should not
imply that an interaction expressed as a set of conditions should be modeled by an AND
model instead of an OR model. The AND model represents a conjunction, while the OR
represents a disjunction of premises. Therefore, the OR must be used when each of the
conditions is sufficient to guarantee Y , while the AND must be used only to represent the
interaction among a set of necessary conditions. (As mentioned in Section 3.1, when r
conditions must be met simultaneously for Y to occur, the appropriate model should be
based on the threshold function, defined in Table 1.)

Apart from this, the noisy AND is more flexible than the noisy OR in several ways.
First, the parents of a noisy OR must all be Boolean, but the noisy AND can accommodate
any binary variables: in fact, the role of +xi and ¬xi in Table 6 is symmetric, while in
Table 3 it is not. For this reason, a non-Boolean variable such as the sex of the patient,
which could not be one of the parents of an OR model, can perfectly be one the conditions of
an AND model. For instance, Sex=female is a condition for being pregnant or for suffering
from breast cancer, in the same way as Sex=male is a condition for suffering from prostate

14. If we need to model a problem in which there are several conditions Xi for Y , each having different
inhibitors and substitutes, and there is also a global substitute, both the leaky AND and the simple
AND would be inadequate. A solution might be to combine both of them in a three-layered model: the
first level would be given by the individual relations Xi → Zi, with parameters ci = P (+xi| + zi) and
si = P (+xi|¬zi); the second level would be a deteministic AND relation between the Zis and Z, and the
third level would be a probabilistic relation between Z and Y , with only one parameter s = P (+y|¬z),
since P (+y|+ z) = 1. The number of parameters would then be 2n + 1, inheriting the above-mentioned
overspecification of the noisy AND. However, we have found no situtation requiring such a sophisticated
model, neither in our experience nor in the literature.
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diseases. The following example will illustrate some of the issues that play a role in building
noisy AND models.

Example. Let us show by means of an example how to model the probability of
Pregnancy (P ) by using a noisy AND.15 We may select three variables: Sex (S), Intercourse
(I), and Contraceptives (C)—see Figure 9. If the values of the variable Sex (S) are +s =
female and ¬s = male,16 parameter c1 represents the probability that a woman can become
pregnant provided that the rest of the conditions are fulfilled. At the first sight, we might
think that c1 = 1, but we must take into account that not all women are fertile, because
of their age or for any other reason. In an adult population, c1 would be close to 1, but in
a general population with little girls and elderly women, it would be lower. Parameter s1

would represent the probability of a male getting pregnant; obviously, s1 = 0.

µ´
¶³
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S µ´
¶³

I µ´
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Figure 9: An example involving a noisy AND model. The nodes represent Sex (male or
female), Intercourse, Contraceptives, and Pregnancy.

Since I represents Intercourse, parameter c2 would indicate the probability of pregnancy
when having sexual intercourse, provided that the other conditions, such as being a fertile
female, etc., are fulfilled. We may take c2 ≈ 1; in that way 1 − c2 represents the effect
of the inhibitors associated with I, such as the fact the male can be infertile. Parameter
s2 represents the probability of pregnancy when not having intercourse. If we exclude the
possibility of in vitro fertilization, which would be a substitute for I, then s2 = 0.

If the values of C are +c = contraceptives and ¬c = no contraceptives, c3 and s3 will
be the probabilities of getting pregnant when using / not using contraceptives, respectively.
Therefore, c3 ≈ 0 (for instance, c3 = 0.02) and s3 = 1.17

These three conditions are not sufficient for the onset of a pregnancy. Even when a
fertile female has sexual intercourse without contraceptives and none of the anomalous
inhibitors mentioned above appears, pregnancy does not always occur, for many reasons —

15. The simple AND discussed in Section 5.1.3 is inappropriate in this case, because s would represent the
probability of getting pregnant when any of the conditions fails. When the ‘not-contraceptives’ condition
fails, i.e., when a woman is taking contraceptives, the probability of pregnancy is small but positive, say
s = 0.01. Therefore, the resulting model would predict that the probability of pregnancy for a woman
not having intercourse would be 0.01, and worse even, the probability of a man to be pregnant would
also be 0.01.

16. Even though S is not a Boolean variable, we use the notation +s = female to represents the fulfillment
of the first contition necessary for pregnancy.

17. This case is an exception to the rule, mentioned in the first paragraph of Section 5.1.1, that in general
ci
∼= 1 and si

∼= 0. The reason is that in this example the second parent is Contraceptives, while the
condition for Pregnancy is “no contraceptives”.
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for example, because the intercourse took place not within the fertile period of the woman’s
monthly cycle, because the embryo does not implant in the uterus, etc. It is then necessary
to add a leak parameter, qL, representing the probability that some conditions (inhibitors),
not modeled explicitly, prevent pregnancy.

Finally, we must check the hypothesis of independence of causal influence (cf. Sec. 3.2),
i.e., whether the inhibitory and substitutionary mechanisms, including those represented by
the leak factor, are a-priori independent and they do not interact with one another. In our
example, it seems reasonable to assume that this assumption is correct. (One might object
by noticing, for example, that the contraceptive cannot fail when the male is infertile, and
so the inhibitors of C and the leaky parameters, but in fact, the above model just says that
the contraceptive can fail independently of the male fertility. It just happens that a failure
with an infertile male does not yield to a pregnancy, which is also predicted by this model.)

Please note that in the AND model each parent Xi represents one “external” condition
that can be observed, while Zi represents the “true” or “internal” condition. Thus, in
our example, S (i.e., X1) represents the condition of being a woman, while Z1 represents
the condition of being a fertile woman; I (i.e., X2) represents the condition of having an
intercourse, while Z2 represents the condition of having intercourse with a fertile male; and
C (X3) represents the use of contraceptives, while Z3 indicates whether the contraceptive
is effective in a particular case. Given this definition of the Zis, in the general population,
c1 = P (fertile-woman|woman) ≈ 0.5.

Alternatively, we may redefine Z1 so that it represents not only the fact that the woman
is fertile, but also that she is in a fertile day of the monthly cycle. In this new model,
c1 = P (woman-on-fertile-day |woman) ≈ 0.1. Therefore, in the first model, the probability
of being in an infertile day was part of the leak parameter qL, while in the new model
this probability is contained in c1. Please remember that in Section 5.1.2 we mentioned
the possibility of absorbing the leak parameter, which represents a global inhibitor, into
the parameters of some link. We also mentioned in Section 5.1.1 that the noisy AND is
overspecified, i.e., that in general a CPT can be parametrized in several ways. Therefore,
different definitions of the Zs lead to different parametrizations and all of them may be
correct. However, it is very important that, in the process of parameter elicitation, the
knowledge engineer and the human expert determine as precisely as possible the meaning
of each Zi, because an imprecise definition of the Zis may result in neglecting or double-
counting some inhibitory mechanisms.

5.2.2 Criteria for applying the noisy MIN

The application of the MIN model when Y is not binary is based on the assumption that
this variable remains in its maximum unless it is lowered by some of the factors Xi. There-
fore, the question asked of experts when eliciting parameters cxi

y would be: “What is the
probability that factor Xi lowers Y to its value y when no other factor has lowered it?”

In our experience in building expert systems, we have never encountered an example of
a MIN gate with a multi-valued Y , but it does not mean that this model cannot be useful
to other knowledge engineers in the future. However, there are several examples in which
the noisy MIN can be used as a generalization of the noisy AND when Y is binary and
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some of its parents are multi-valued. It would be the equivalent of adding more columns in
Table 6, one for each value of Xi.

Example. Let us assume that we wish to refine the example in the previous section by
taking into account the effectiveness of the different contraceptives. Then, the domain of
variable C would have a value x3 for each method that we want to consider, including no-
contraceptives, and each parameter cx3

+y would represent the probability of getting pregnant
when using method x3 (provided that the other conditions are fulfilled).

In this use of the noisy MIN model, the number of parameters for a link Xi → Y is the
same as the number of values of Xi, because cxi¬y = 1− cxi

+y. For each cxi
+y, the question that

the knowledge engineer should ask the expert is: “What is the probability that Y is true
when Xi = xi and all the other conditions hold?”

6. XOR models

6.1 Properties of XOR models

The deterministic XOR model was introduced in Section 3.1—see Tables 1 and 2. It would
be possible to define a noisy XOR by following the scheme given in Section 3.2.1. In the
case of a two-parent family, the noisy XOR would be given by Table 8. In principle, it is
not possible to define a leaky XOR following the scheme given in Section 3.2.2, because the
XOR function is not associative (cf. Sec. 3.1).18

P (+y|x1, x2) +x1 ¬x1

+x2 c1 · (1− c2) + (1− c1) · c2 s1 · (1− c2) + (1− s1) · c2

¬x2 c1 · (1− s2) + (1− c1) · s2 s1 · (1− s2) + (1− s1) · s2

Table 8: CPT for a noisy XOR with two parents, where ci = P (+zi| + xi) and si =
P (+zi|¬xi).

Examples of the application of the XOR are very rare in practice. Besides the XOR-
based classifiers discussed in the next subsection, the only example of which we are aware
is the following case, mentioned by Jurgelenaite and Lucas [44]: a bacterial infection may
be treated with either bactericidal drugs, such as penicillin, or bacteriostatic drugs, such as
chlortetracyclin, but the join administration of both has virtually no effect, because they
are based on antagonic causal mechanisms. However, in this case the direct specification
of the CPT would need 4 parameters, exactly the number required by an XOR, and the
parameters of the CPT are much more intuitive than those of the XOR. For this reason,

18. It would be possible to define a quasi-leaky XOR by introducing a three-valued auxiliary variable Z
such that z0 means “no parent of Y takes the value true,” z1 = “exactly one parent of Y takes the
value true,” and z2 = “at least two parents of Y take the value true.” Then, P (+y|z1) = 1 and
P (+y|z0) = P (+y|z2) = 0. The function relating Z and the Xi would be associative and, consequently,
might be governed by a leaky model.

We can not see any utility of this leaky XOR for knowledge engineering, but still the idea of
introducing a three-valued Z can serve to speed up the propagation of evidence by applying parent
divorcing [63] or the so-called temporal decomposition [34, 35].
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even in this example, it would counterproductive to try to build the CPT by means of an
XOR.

If the case of a family with many parents, a noisy XOR would have the advantage of
reducing the number of parameters from 2n to 2n, but it is difficult for us to imagine a
real-world situation in which there are several possible causes of an effect Y such that each
one separately can produce Y but the concurrence of two or more causes prevents the effect.
If that hypothetical situation occur, perhaps it would be possible to find an interpretation
for the auxiliary variables {Zi} and for the parameters of the noisy XOR. However, in
the absence of a qualitative model of causal influences it is virtually impossible to give an
interpretation to the Zis and to the parameters of the model and, consequently, it is not
possible to pose meaningful questions to a human expert or to establish a correspondence
between the frequencies stored in a database and the parameters of the XOR.

In summary, we have discussed here the noisy XOR for the sake of completeness, not
because we think it can be useful in practice.

Nevertheless, occasionally we see our students improperly applying the XOR, because
of the following argument: “In this domain, the concurrence of causes is so improbable that
in practice every effect has only one cause; for this reason we use the XOR, which leads to
the diagnosis of only one cause for each effect. The OR does not look appropriate because
it might diagnose two or more causes.” This is a serious modeling error and the reasoning
on which it is based is flawed: if the prior probability of each of the causes is very small,
the OR model will not diagnose the presence of two of them unless there is enough evidence
for it, a situation that, even though rare, may occur, and would not be properly tackled by
an XOR model.

6.2 XOR-based classifiers

Although the noisy XOR is not useful in practice, its deterministic version can be applied
in classification problems as follows. Let us consider an artificial vision system trying to
determine whether the object in a certain image is a hammer, a screwdriver, or a pair of
pliers (we assume that there is no other possibility). The probabilities of finding each one of
them are respectively p1, p2 and p3, and p1 +p2 +p3 = 1. A näıve knowledge engineer might
build a tree, with a root Y and three children, X1, X2 and X3 (see Figure 10). Each Xi

may have several children, representing the findings that characterize Xi. For example, F1

might represent the presence of a wooden handle, which characterizes a hammer. The value
+y means that there is an object in the image, +x1 means that the object is a hammer,
+x2 that it is a screwdriver, and +x3 that it is a pair of pliers. The prior probability
P (+y) does not matter because we will know with certainty if there is an object in the
image or not. The probabilities for link Y → Xi are P (+xi|+ y) = pi and P (+xi|¬y) = 0.
When there is an object in the image, this model correctly gives the a priori probability
that it is a hammer, a screwdriver of a pair of pliers. Nevertheless, it incorrectly asserts
that the object can be at the same time a hammer and a screwdriver, with probability
P (+x1 ∧ +x2| + y) = p1 · p2 > 0. Furthermore, P (x2| + y, x1) = P (x2| + y). This means
that a certain finding contributing evidence for or against the identification of the object
as a hammer does not necessarily modify the probability that the object is a screwdriver.
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Figure 10: A wrong graph for the classification problem.

There are at least two ways to properly represent this problem. The first is the näıve
Bayes classifier [23], whose graph is a tree having a root node with one value per class.
The fact that the values of a variable are exclusive and exhaustive guarantees that each
object is assigned to exactly one class. All the findings Fi are children of the root node
(see Figure 11). The problem is that each link requires a CPT that grows linearly with the
number of objects to be identified. An even more serious problem is the lack of modularity,
in the sense that the addition of a new object to the list (for instance, a set of scissors),
would oblige to rebuild all the conditional probabilities P (Fi|x) in the model.
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Figure 11: The naive-Bayes classifier.

An alternative model for classification based on the deterministic XOR can be built by
including a Boolean variable Xi for each class, as shown in Figure 12. The prior probability
of Xi is set to

P (+xi) =
pi

1 + pi
, (49)

whereby the values of the pis must add to one, i.e.,
∑

i pi = 1. Then we add a node Y ,
with n parents {X1, . . . , Xn}, interacting through a deterministic XOR and set the value
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of Y to +y — see Figure 12. This model correctly returns that P (+xi| + y) = pi and
P (+xi ∧+xj |+ y) = 0 for i 6= j.19
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Figure 12: A classifier based on the XOR model.

When a node Fj represents a specific feature of one of the objects, Xi, the graph must
contain a link Xi → Fj . If Fj does not provide information for discriminating the other
objects, i.e., if P (+fj |+ xk) = P (+fj |+ xl) for every k and l different from i, then Xi will
be the only parent of Fj . For example, if the probability of detecting a wooden handle in
the image (by error) is the same for the screwdriver (X2) and for the pliers (X3), then it
suffices to have one link pointing to F1, namely X1 → F1. If a node Fj represents a feature
of both Xi and Xk, these two nodes should be the parents of Fj , interacting by means of a
noisy OR.

The marginal and conditional probability distributions given by this model are correct
only when Y = +y, not when the value of Y is ¬y or when it is unspecified. This is not a
problem in practice, since this model is intended for classifying an object when the object
has been observed.

The näıve-Bayes model is more adequate when the classifier is learned from a data-
base. When the classifier is build and maintained manually, however, the alternative XOR-
classifier might be more adequate. Given that classifiers are usually built from data, the
näıve-Bayes model seems more appropriate in general, but it might happen that in some

19. The proof of the first of these equations is as follows:

P (+x1|+ y) = P (+x1,¬x2,¬x3|+ y) =

=
P (+y|+ x1,¬x2,¬x3)P (+x1)P (¬x2)P (¬x3)P

x1

P
x2

P
x3

P (y|x1, x2, x3)P (x1)P (x2)P (x3)

=
P (+x1)P (¬x2)P (¬x3)

P (+x1)P (¬x2)P (¬x3) + P (¬x1)P (+x2)P (¬x3) + P (+x1)P (¬x2)P (+x3)

=
P (+x1)/P (¬x1)

P (+x1)/P (¬x1) + P (+x2)/P (¬x2) + P (+x3)/P (¬x3)
.

From Equation 49 we have that P (+xi)/P (¬xi) = pi and, therefore,

P (+x1|+ y) =
p1

p1 + p2 + p3
= p1 .

The second equation follows immediately from the fact that in the XOR P (+y|+xi∧+xj) = 0 for i 6= j.
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problems of knowledge engineering or learning, the XOR-classifier were more appropriate
[cite the work by E. Sucar].

7. Temporal canonical models

7.1 Introduction: event networks

There are two main kinds of temporal probabilistic models. Periodic models consist in
discretizing time and creating an instance of each random or decision variable for each
point in time. Dynamic Bayesian networks [9], which include Markov chains as a special
case, and dynamic LIMIDs [55, 84], which include Markov decision processes and dynamic
influence diagrams, are examples of periodic probabilistic models. In this context “dynamic”
is virtually a synonym for “periodic.”

The second class of temporal probabilistic models is formed by event networks, which
take a very different approach: each node or variable represents an event and each value of
that variable represents the time in which the event occurs. There are two kinds of event
networks: temporal-nodes Bayesian networks (TNBNs) [2] and networks of probabilistic
events in discrete time (NPEDTs) [30]. Both of them use discrete variables. In the for-
mer, each value of a variable represents a time interval, whose length may differ from those
of other values (other intervals) of the same variable and those of other variables. On the
contrary, in an NPEDT, each value represents a point in time. The interval between consec-
utive points is always the same, and all the variables have the same domain, {t1, t2, . . . , tN ,
never}; v[t] means that event V occurs at time t, and v[never] that it does not occur.

In an NPEDT, the CPT for a node X without parents can be given either explicitly or
by means of a function; for example, when the hazard rate is constant, the probability of
X may be given by the exponential decay function:

P (x [t]) = (1− k)t · k . (50)

In contrast, the CPTs for the nodes with parents are usually assumed to be time invariant :

P (y [tY +4t] | x1 [t1 +4t] , . . . , xn [tn +4t]) = P (y [tY ] | x1 [t1] , . . . , xn [tn]) . (51)

Periodic models are best suited for modeling and controlling dynamic processes, while
event networks are more appropriate for diagnosing which events have happened and when,
and for predicting when some events will occur (see [30]). A more detailed comparison of
TNBNs vs. NPEDTs can be found in [28].

7.2 Temporal canonical models for NPEDTs

Two families of models have been proposed for NPEDTs: OR and AND [30].
The temporal deterministic OR is based on the assumption that Y occurs as soon as

it has been caused by one of its parents. Therefore, if Xi produces Y at time ti and Xj

at time tj , then Y occurs at time min(ti, tj). We define that for all t, min(t, never) = t.
Consequently, the function f used for building a temporal deterministic OR is min.20

20. If we ordered the time from the future to the past, the deterministic OR and its probabilistic counterparts
would be based on a max function rather than on min, as explained in [30].
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The temporal noisy OR follows the framework described in Section 3.2.1 (see especially
Figure 3). The interaction between Y and the Zis is given by a temporal deterministic
OR, i.e., by a min function. The interpretation of the auxiliary variables Zi is straight-
forward: zi[t] means that Xi has produced Y at time t. The parameters ci[t, t′] represent
the probability that Xi occurring at time t produces Y at time t′. An obvious restric-
tion for these parameters is that t > t′ implies ci[t, t′] = 0, because the effect can not
occur before the cause. An additional restriction in the case of time invariance is that
ci[t +4t, t′ +4t] = ci[t, t′]. These restrictions simplify the elicitation of the parameters, as
it suffices to give the probabilities ci[0, t] for all the values of t; in practice, either ci[0, t] is
positive only for a few values of t or it can be approximated by an exponential decay, as in
Equation 50.

The temporal leaky OR admits the possibility that causes not explicit in the model
produce Y with a probability cL[t], which in the case of time invariance is a constant (even
though it may be different for other leaky models in the same network).

Similarly, it is possible to define the deterministic, noisy, and leaky version of temporal
AND models, all of them based on the max function, which implies that Y can not occur
until all its parents have occurred (or have been substituted). In these models, a parent
taking on the value “never” is sufficient to prevent the occurrence of Y .

It would also be possible to define temporal models based on a threshold function, such
that Y occurs as soon m of its parents cause it. When m = 1 we have the temporal noisy
OR, and when m = n, the temporal noisy AND.

8. Bibliographical notes

8.1 Models

The term “canonical model” in the context of probabilistic graphical models was introduced
by Pearl [67].

The NOT model was first used by Heckerman and Breese [36]. The ADD model, some-
times called “noisy addition” or “noisy SUM,” and the r-out-of-n function (cf. Section 3.1)
were introduced by Heckerman [34, 36]. The threshold function was used in [45, 85].

An analysis of the properties of Boolean functions of n variables can be found in [25,
45, 89].

The independence of causal influence (ICI), was studied by Heckerman and Breese [34,
36] under the name “causal independence.” The term ICI was proposed by Laskey.21 Some
authors occasionally call it “independence of causal interaction”. Our framework for ICI
models (Section 3.2) is an extension of the model proposed by Srinivas [78]. The analysis of
leaky models (Section 3.2.2) is a contribution of this paper, although the idea of computing

21. In a message posted to the UAI mailing list on October 9, 1996, Kathryn Laskey wrote: “I am lobbying
for a change in terminology from ‘causal independence’ to ‘independence of causal influence’ (ICI). [...]
In my experience, beginning modelers often have trouble understanding the difference between:
—marginal independence of A and B (independence of two effects of a cause); and
—A and B independently acting as causal influences of C (as in a noisy-OR or noisy adder model).

Using the term ‘causal independence’ for the latter seems to exacerbate this confusion, while using
the term ‘independence of causal influence’ seems to help clear it up.”

David Heckerman replied: “I like the new name, as it is a more accurate description of the indepen-
dence assumption.”

43



D́ıez & Druzdzel

the leak probability from a larger Bayesian network was used in [70]. Simple canonical
models are a contribution of this paper.

The noisy OR was proposed by Good [32]. It was also studied by Kim and Pearl [49, 66],
who coined the term “noisy OR,” and Peng and Reggia [68]. Cozman [7, 8] has shown that
the noisy OR is the only (binary) model that satisfies a set of desirable properties. This
justifies why the noisy OR and its extension, the causal MAX, which satisfies basically the
same properties, have been used in practice much more than any other model.

Henrion [39] introduced the leaky OR, Lemmer [56] the recursive noisy OR (RNOR),
and Kuter et al. [50] the inhibitory RNOR.

Henrion [39] also introduced the first noisy MAX model, which we have called here graded
noisy MAX . Dı́ez [10] proposed the terms “noisy MAX” and “noisy MIN,” formalized these
models, and introduced the leaky MAX. The causal noisy MAX defined in Section 4.1.6 is
slightly more general than the graded noisy MAX in [10, 39], because it does not require that
the parents are graded variables. The noisy MAX described in Section 4.1.5 is even more
general because it neither requires that Y is a graded variable nor imposes any condition
on the parameters cxi

y . The distinction between Dı́ez’s net parameters, cis, and Henrion’s
compound parameters, pis (cf. Sec. 4.2.1) is a contribution of this paper.

The feeding-lines model (Section 4.3) was proposed by Srinivas [78], although the name
“feeding-lines” has been introduced in this paper.

The noisy AND presented in Section 5.1.1, which admits both inhibitors and substitutes,
is a generalization of the noisy AND described by Galán and Dı́ez [29] and studied by Lucas
[57], which only admits inhibitors. The simple AND is a contribution of this paper. The
semi-deterministic AND, which is a special case of both the leaky AND and the simple
AND, was first proposed and applied by Conati et al. [5].

Lucas, Jurgelenaite and van Gerven [58, 44, 86] have studied the quantitative and qual-
itative properties of several noisy models based on different Boolean functions.

Temporal canonical models were proposed by Galán and Dı́ez [29, 30].

A significant amount of research has been done on how the specific properties of the
OR/MAX models can be used to generate qualitative explanations in expert systems [1, 11,
15, 18, 51, 66, 91]. Nevertheless, we have the feeling that there are still many possibilities of
explanation in canonical models to be discovered. See also [52] for a review of explanation
methods in Bayesian networks.

Several authors have analyzed the computational properties of canonical models, espe-
cially the OR/MAX models, in order to achieve more compact representations of CPTs
and more efficient algorithms (both in time and space) for the computation of probabilities.
References up to 2003 can be found in [12]; see also [83].

In this paper, focused on knowledge engineering, we have not reviewed statistical dis-
tributions that have been used for building probabilistic graphical models, especially in the
context of learning models with continuous variables. Some of those distributions are: linear
regression, generalized linear regression, logistic regression, Gaussian, conditional Gaussian,
mixtures of Gaussians, mixtures of truncated exponentials, Gamma, etc. The reader inter-
ested in this topic can found numerous references by searching the Internet with each of
these terms and “Bayesian networks.”
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8.2 Applications

Medicine is the field where canonical models have been more widely used. Habbema [33],
Heckerman [38] and Shwe et al. [74] used the noisy OR for building models containing
various diseases. The noisy MAX model, including the noisy OR as a particular case, was
applied to medical domains, such as Dı́ez et al.’s DIAVAL [11, 13], Pradhan et al.’s CPCS
project [70], Onísko et al.’s HEPAR II [64, 65], Kappen and Neijt’s Promedas [48], Lacave
and Dı́ez’s Prostanet [53], Gómez et al.’s IctNeo [31], etc. The DXpress tool, by Knowledge
Industries, which includes the noisy OR as a modeling tool, was used for building three
medical Bayesian networks for dementia, headaches, and sleep disorders, respectively.22

Lucas [59] used the noisy AND in a model for managing infectious diseases at the ICU.
The noisy OR/MAX was also applied to troubleshooting of mechanical devices (printers,

copiers, automobiles, and turbines) by Heckerman et al. [37]. Conati et al. [5] and Vomlel
[87] have used canonical models for modelling students in intelligent tutoring systems.

Temporal canonical models were applied by Galán et al. to medicine [27] and to power
plant diagnosis [28].

Zagorecki and Druzdzel [94] have studied the problem of how common noisy MAX
models are in practice. They proposed an algorithm that fits a noisy MAX distribution to
an existing CPT and then applied it to nodes of three sizeable existing Bayesian network
models. They found that conditional probability distributions in as many as 50% of the
nodes with two or more parents can be reasonably approximated by noisy MAX models.
In another study [93], they compared the speed and the accuracy of elicitation of CPTs to
elicitation of noisy OR distributions following both net and compound parameterizations
(cf. Section 4.2.1). They found that the net parameterizations led to slightly more precise
estimates than the other two parameterizations within a shorter amount of time.

The RNOR and the inhibitory RNOR were implemented by Kuter et al. [50] in CAT, a
propietary tool used for interactively planning military operations.

Rish et al. [72] used the deterministic XOR when building Bayesian networks for decod-
ing messages transmitted through noisy channels.

XOR classifiers (Sec. 6) were introduced in a previous version of this paper. Sucar [give
references] used them for ???.

The above-mention DXpress (by Knowledge Industries), GeNIe [16], and MSBN [46]
were the first general-purpose tools that supported canonical models for the construction of
Bayesian networks and influence diagrams. To our knowledge, currently the most complete
treatment of canonical models if offered by Elvira [24].

Neal [62], Friedman and Goldszmidt [26], Meek and Heckerman [60], and Onísko et
al. [65] used the noisy OR to improve the learning of probabilities. The group led by
Peter Lucas has used the noisy threshold model for learning probabilistic models aimed at
diagnosing and treating ventilator-associated pneumonia [45] and predicting carcinoid heart
disease [85]. This group has also used other noisy ICI models for learning CPTs [42, 43].

8.3 Acquiring the numerical probabilities

In this section we will mention a few references that, even though not specific for canonical
models, may help knowledge engineers to obtain the required probabilistic parameters.

22. See http://www.kic.com/dxpress.htm.
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• Druzdzel and van der Gaag [20] discussed how to elicit the probabilities by combining
qualitative and quantitative information.

• They were also the editors of a special issue of the IEEE Transactions on Knowl-
edge and Data Engineering [21], based on an IJCAI’95 workshop entitled “Building
Probabilistic Networks: Where Do the Numbers Come From?” [22].

• The book by Morgan and Henrion [61, chapters 6 and 7] discusses some techniques
for “calibrating the experts” and some elicitation protocols.

• Van der Gaag, Renooij et al. [71, 81, 82] proposed several techniques for efficiently
eliciting many probabilities.

• There is also a vast literature on transforming verbal expressions of probability, such
as “very often,” “almost always,” etc., into numerical statements—see for instance
[14, 92] and references therein.

• Druzdzel and Dı́ez [17] showed that combining probability estimates from different
sources, such as epidemiological studies, databases, and subjective estimates, may
lead to significant errors, and gave criteria for avoiding them.

• Additionally, knowledge engineers should be aware of the psychological biases that
affect the elicitation of probabilities; a lot of work has been done in this field after the
pioneering works of Tversky and Kahneman [47, 79]. See, for instance, [3, 69].

• Finally, a sensitivity analysis might help to determine if some probabilities should
be assessed more carefully as they have a higher influence on the results returned
by the model. It is possible to find many sensitivity analysis methods by searching
the Internet with the terms “sensitivity analysis” and either “Bayesian networks,”
“Markov networks,” or “influence diagrams.”

9. Conclusions

We argued that the hardest part in the process of building Bayesian networks and influence
diagrams for real-world problems is obtaining their numerical parameters. The straightfor-
ward approach that involves elicitation of an exponential number of numerical probabilities
composing a conditional probability table (CPT), is impractical for nodes having more
than three or four parents. The so called canonical models, whose role can be compared to
that of parametric conditional probability distributions, can significantly reduce the number
of probability estimates required to quantify a conditional probability distribution. After
studying some functions that can be used for building deterministic models, we proposed a
general framework for models, with a special emphasis on ICI models, i.e., those based on
the assumption of independence of causal influence. We then analyzed the most common
families of canonical models, the noisy OR/MAX, the noisy AND/MIN, and the noisy XOR,
generalizing them and offering criteria for applying these models in practice. We also briefly
reviewed extending canonical models to temporal domains. Most of the non-deterministic
models studied in this paper are based on the ICI assumption, with the only exception
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of the RNOR and inhibitory RNOR models (Secs. 4.1.3 and 4.1.4) and simple AND (cf.
Sec. 5.1.3).

The original contributions of this paper are:

• A general framework for canonical models, based on three categories: deterministic
models, ICI models (which can be subdivided into noisy and leaky models), and simple
canonical models (SCMs). The analysis of leaky models and the definition of SCMs
have not been published previously. This framework does not only provide a unifying
view of the models published so far, but also a guide for building user-tailored models.

• A review of the models proposed in the literature, with comprehensive bibliographical
references.

• A generalization of some of the existing models, such as the noisy MAX and the noisy
AND.

• A detailed analysis of OR/MAX, AND/MIN, and XOR models; in particular, XOR
classifiers are a contribution of this paper.

• A guide for applying those models in practice, i.e., criteria for deciding which model
can be applied in a certain situation and detailed recommendations for obtaining the
numerical parameters. We have also discussed some errors that novice knowledge
engineers are prone to make and how to prevent them.
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Appendices

Appendix A: Proofs of the theorems for leaky models

Proof of Theorem 1. The join probability for the large network is:

P (v′) =
∏

Vi∈V\{Y }
P (vi|pa(vi)) · P (y|x,xI) ·

∏

Vj∈VI

P (vj |pa(vj)) .

Given that V ∩VI = ∅ and the only node in V having parents in VI is Y , we have,

P (v) =
∑
vI

P (v′) =
∏

Vi∈V\{Y }
P (vi|pa(vi)) ·

∑
vI


P (y|x,xI) ·

∏

Vj∈VI

P (vj |pa(vj))


 .
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On the other hand, as no node in VI has parents in V, we have that

P (vI) =
∑
v

P (v′) =


∑

v

∏

Vi∈V

P (vi|pa(vi))


 ∏

Vj∈VI

P (vj |pa(vj)) .

In the computation of P (vI) all the nodes in V are barren nodes, which implies that

P (vI) =
∏

Vj∈VI

P (vj |pa(vj)) .

Therefore,
P (v) =

∏

Vi∈V\{Y }
P (vi|pa(vi)) ·

∑
vI

P (y|x,xI) · P (vI) . (52)

We define RI = VI\XI ; i.e., RI contains the implicit nodes that are not parents of Y . This
leads to

∑
vI

P (y|x,xI) · P (vI) =
∑
xI

P (y|x,xI) ·
∑
rI

P (vI)

=
∑
xI

P (y|x,xI) · P (xI) .

The subsets X and XI have no common ancestor. For this reason, P (xI) = P (xI |x) and
∑
vI

P (y|x,xI) · P (vI) =
∑
xI

P (y|x,xI) · P (xI |x) =
∑
xI

P (y,xI |x) = P (y|x) .

The substitution of this result into Equation 52 proves the theorem.

Proof of Theorem 3. The CPT for Y in the large network (noisy model) is, according
with Equation 8,

P (y|x,xI) =
∑
z

∑

zI |f(z,zI)=y

∏

i|Xi∈X

P (zi|xi)
∏

i|Xi∈XI

P (zi|xi)

=
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zI |f(z,zI)=y

∏

i|Xi∈XI

P (zi|xi) .

Since f is associative,

f(z, zI)=y ⇔ f(z, f(zI))=y ⇔ ∃ zL | f(zI)=zL ∧ f(z, zL)=y .

Please note that zL ∈ range(f(zI)), in accordance with Equation 10. Consequently,
∑

zI |f(z,zI)=y

≡
∑

zL|f(z,zL)=y

∑

zI |f(zI)=zL

and
P (y|x,xI) =

∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

∑

zI |f(zI)=zL

∏

i|Xi∈XI

P (zi|xi)

︸ ︷︷ ︸
.
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Because of Definition 2 (Eq. 11),

P (y|x,xI) =
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

P (zL|xI) .

The CPT for Y in the small network (leaky model) is

P (y|x) =
∑
xI

P (y|x,xI)P (xI |x) =
∑
xI

∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

P (zL|xI)P (xI)

=
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

∑
xI

P (zL|xI)P (xI)

=
∑
z

∏

i|Xi∈X

P (zi|xi)
∑

zL|f(z,zL)=y

P (zL) .

Appendix B: Conversion between the pxi
y s and the cxi

y s

Let us analyze now the relation between the pxi
y parameters introduced in Equation 44 and

the cxi
y s used in the definition of the noisy/leaky MAX (Eq. 27).

In analogy with Equation 29, we can define accumulative parameters for the pxi
y s, as

follows:
P xi

y = P (Y ≤ y|xi,¬xj (∀j, j 6=i)) =
∑

zi≤y

pxi
zi

. (53)

Because of Equation 40,
P xi

y = CL
y · Cxi

y ·
∏

j 6=i

C¬xj
y ,

and because of Equations 29 and 32,

C¬xj
y =

∑

y′≤y

c¬xj
y′ = c¬xj

¬y︸︷︷︸
1

+
∑

y′|¬y<y′≤y

c¬xj
y′︸︷︷︸
0

= 1 .

Therefore,
P xi

y = CL
y · Cxi

y . (54)

We also have, from the definition of the Cs and the P s (Eqs. 29 and 53) that

cxi
y =


∑

zi≤y

cxi
zi


−


 ∑

zi≤y−1

cxi
zi


 = Cxi

y − Cxi
y−1 (55)

pxi
y =


∑

zi≤y

pxi
zi


−


 ∑

zi≤y−1

pxi
zi


 = P xi

y − P xi
y−1 . (56)

In summary, the conversion from the pxi
y s to the cxi

y s, and vice versa, can be done by
applying the equations indicated in parentheses in the following diagram:
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pxi
y

Eq. 53−−−−−−−→←−−−−−−−
Eq. 56

P xi
y

Eq. 54−−−−−−−→←−−−−−−−
Eq. 54

Cxi
y

Eq. 55−−−−−−−→←−−−−−−−
Eq. 29

cxi
y .

This process is a generalization of Equation 42.

Appendix C: AND/OR duality

According to the De Morgan’s laws, x1 ∧ . . . ∧ xn is equivalent to ¬(¬x1 ∨ . . . ∨ ¬xn).
Therefore, we can try to define the AND models by using the schema in Figure 13: if the
relation among Y ′ and the X ′

is is given by a deterministic OR, the relation between Y and
Y ′ is given by a NOT (negation) and each relation between X ′

i and Xi is also given by a
NOT, then the relation between Y and the Xis corresponds to a deterministic AND. In a
similar way, we can obtain the deterministic OR from the deterministic AND. There is a
perfect duality between both models.

µ´
¶³
X1 µ´

¶³
Xn

?
NEG

?
NEG

· · ·

µ´
¶³
X ′

1 µ´
¶³
X ′

n

@
@

@@R

¡
¡

¡¡ª

· · ·

OR

µ´
¶³
Y ′

?
NEG

µ´
¶³
Y





AND

Figure 13: AND/OR duality: The deterministic AND can be obtained from the determin-
istic OR.

However, when applying the above schema to the noisy OR, we do not obtain the
noisy AND as presented in this paper. The main reason is that the noisy OR has only
one parameter per link (cf. Section 4.1.1), while the noisy AND has two (cf. Sec. 5.1.1).
Coming down to the details, if the noisy OR in Figure 13 has a parameter c′i for each link
X ′

i → Y ′, then Equation 19 tells us that

P (¬y′|x′) =
∏

i∈I+(x′)

(1− c′i)

and, after applying the negations, we obtain

P (+y|x) =
∏

i∈I¬(x)

(1− c′i) .
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The comparison of this result with Equation 47 shows that Y and X interact through a
noisy AND such that si = 1 − c′i and ci = 0, i.e., a noisy AND with substitutes (i.e., a
failing condition may be replaced by a substitute condition) but without inhibitors.

Conversely, if we apply the schema in Figure 13) to the noisy AND, we do not obtain a
noisy OR but a more general model having two parameters per link. Let c′i and s′i be the
parameters for link X ′

i → Y ′ in the noisy AND; the CPT for the resulting OR-like model is

P (¬y|x) =
∏

i∈I+(x)

s′i
∏

i∈I¬(x)

c′i ,

or, defining ci = 1− s′i and si = 1− c′i,

P (¬y|x) =
∏

i∈I+(x)

(1− ci)
∏

i∈I¬(x)

(1− si) . (57)

According to this equation, ci represents the probability that cause Xi produces the effect
Y when Xi is present and the other causes of Y are absent (as in the standard noisy OR—
see Eq. 19), while si represents the probability that a substitutive cause associated with
Xi produces Y when Xi is absent. Apparently this is a leak probability, but in the leaky
OR cL is associated with the implicit causes, while in this generalized version of the noisy
OR (the dual of the noisy AND) ci is associated with one of the explicit causes, Xi and,
therefore, the substitutive cause represented by ci can only replace Xi, not the other causes
of Y .

However, the idea of an implicit cause that can only substitute one of the causes of Y
and not the others contradicts our intuitive understanding of causality, and for this reason
in the definition of the noisy OR we do not allow this kind of substitutive causes, i.e., we
require that si = 0. Consequently, there is not a perfect duality between the noisy OR and
the noisy AND.

Finally, if we apply the scheme in Figure 13 with a MAX model instead of the OR and
the INV model (defined in Section 3.1) instead of the NOT, we obtain the MIN model. In
the same way, the MAX can be obtained from the MIN by the same procedure. In this
case, there is a perfect duality between the two models.

References

[1] M. Agosta. Conditional inter-causally independent node distributions, a property of
Noisy-OR models. In Proceedings of the 7th Conference on Uncertainty in Artificial
Intelligence (UAI’91), pages 9–16, Los Angeles, CA, 1991. Morgan Kaufmann, San
Mateo, CA.

[2] G. Arroyo-Figueroa and L. E. Sucar. A temporal Bayesian network for diagnosis and
prediction. In Proceedings of the 15th Conference on Uncertainty in Artificial In-
telligence (UAI’99), pages 13–20, Stockholm, Sweden, 1999. Morgan Kaufmann, San
Francisco, CA.

[3] J. Baron. Thinking and Deciding. Cambridge University Press, Cambridge, UK, third
edition, 2000.

51



D́ıez & Druzdzel

[4] W. J. Clancey. The epistemology of rule-based expert systems — A framework for
explanation. Artificial Intelligence, 20:215–251, 1983.

[5] C. Conati, A. S. Gertner, K. VanLehn, and M. J. Druzdzel. On-line student modeling
for coached problem solving using Bayesian networks. In Proceedings of the Sixth
International Conference on User Modeling (UM’97), pages 231–242. Springer, Vienna,
Austria, Chia Laguna, Italy, 1997.

[6] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42:393–405, 1990.

[7] F. G. Cozman. Axiomatizing Noisy-OR. Technical Report BT/PMR/0409, Escola
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